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1 Abstract Definition

Let σ ∈Sn be a permutation. An ascent of σ is an occurrence of σ(j) < σ(j + 1) for j = 1,� , n−
1. The Eulerian number

〈

n

k

〉

is the number of permutations in Sn with exactly k ascents.

Denote the permutation σ ∈ Sn by [σ(1), σ(2), � , σ(n)]. For example [4, 2, 1, 3] is the permuta-
tion σ in S4 with σ(1) =4, σ(2)= 2, σ(3)= 1, σ(4)= 3. This has only one ascent [1, 3]. Likewise

[5, 1, 3, 4, 2] has 2 ascents,

[2, 3, 4, 1, 5] has 3 ascents.

Clearly,
∑

k

〈

n

k

〉

= n!,

since summing over k makes us count all the permutations in Sn regardless of their ascent.

They also observe the following symmetry

〈

n

k

〉

=
〈

n

n− 1− k

〉

,

which captures the fact that Eulerian numbers could as well have been defined in terms of
descents. This is seen by simply reversing the bracketed representation [σ(1), σ(2), � , σ(n)]
turning ascents into descents and vice versa.

The Eulerian numbers appear as sequence A008292 in [Sloane, 2007]. The notation as well as
the choice of indices varies across the literature. A particularly often used alternative is

An,k ,
〈

n

k + 1

〉

.
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2 Recurrence

The Eulerian numbers satisfy the following defining recurrence relation

〈

n

k

〉

= (k + 1)
〈

n− 1
k

〉

+ (n− k)
〈

n− 1
k − 1

〉

,
〈

0
k

〉

= δk=0,

with the understanding that
〈

n

k

〉

= 0 for n < 0.

Proof. First, note that every permutation in Sn can be constructed from a permutation σ ∈
Sn−1 by “inserting” n into the bracketed list [σ(1), � , σ(n − 1)]. So either n is inserted at an
end, or we have

[� , a, n, b,� ].

Since a < n > b this account for one ascent. In any way, the insertion either leaves the number of
ascents invariant or increases it by one.

To get an element with k ascents in Sn while leaving the number of ascents invariant, we have to
start with one of the

〈

n − 1
k

〉

permutations in Sn−1 with exactly k ascents. We have to insert n

either at one of the k places where an ascent occured or at the beginning. This amounts to

(k + 1)
〈

n− 1
k

〉

possibilities.

When increasing the number of ascents we have to start with one of the
〈

n − 1
k − 1

〉

permutations

with k − 1 ascents, and insert n either at one of the (n − 1)− 1 − (k − 1) places of an descent or
at the very end. That makes

(n− k)
〈

n− 1
k − 1

〉

possibilities. �

We can arrange the Eulerian numbers in a triangle like we are used to for the binomial coeffi-
cients. Compare Pascal’s triangle and Euler’s triangle.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

1
1 1

1 4 1
1 11 11 1

1 26 66 26 1

Note that the n-th row indeed sums to n!.

3 Counting Points in Hypercubes

How many integer points are in the hypercube [1, x]n? Fair enough, you might say, that’s trivial
for it’s just xn many. Let’s, however, count these points in a different combinatorial fashion, and
get an identity for xs in this way. We have already seen that the basis {1, x, x2, � } for polyno-
mials often needs to be replaced by more convenient basis especially in the context of discrete
calculus, where we encountered the falling factorials {1, x, x2,� }.

n = 1.

We have to choose i such that 1 6 i 6 x. Clearly, there are
(

x

1

)

many such possibilities,
and we get the trivial

x1 =
(

x

1

)

.

n = 2.

Now, the points in the hypercube are given by pairs (i, j) such that 1 6 i, j 6 x. Then
there are two cases.

i 6 j , j < i.

Eulerian Numbers A First Glance

Armin Straub
astraub@math.tulane.edu

2/6



The first case makes up for
(

x +1
2

)

possibilities while the second contributes
(

x

2

)

many. To

see the former just note that the number of (i, j) such that 1 6 i 6 j 6 x is the same as
the number of those (i, j) for which 1 6 i < j 6x +1. We thus have

x2 =
(

x

2

)

+
(

x+ 1
2

)

.

n = 3.

Here we have to count triples (i, j , k) for which 1 6 i, j , k 6 x. Imitating what we did in
the previous case we end up with the following 6 possibilities.

i 6 j 6 k

i 6 k < j

j < i 6 k

j 6 k < i

k < i 6 j

k < j < i

The first corresponds to
(

x +2
3

)

possibilities while the next four each provide
(

x +1
3

)

possi-

bilities. The last one contributes another
(

x

3

)

. Hence

x3 =
(

x

3

)

+4
(

x+ 1
3

)

+
(

x + 2
3

)

.

Note that the 6 cases correspond to the permutations of {i, j , k}.

General Case.

The points are 1 6 j1,� , jn 6 x. Again, by considering the permutations σ of {1,� , n} we
are lead to distinct n! cases. But how to decide whether to use 6 or < ? One choice is
to take jσ(k) 6 jσ(k+1) if σ(k) < σ(k + 1) and jσ(k) < jσ(k+1) otherwise. That’s what we
did in the case n = 3. If you think about it for a second you’ll see that by doing so we
ensure that we cover all possibilities and that our cases don’t overlap.
Now, pick some permutation σ. Say there are λ occurences of 6 . Then σ contributes
(

x + λ

n

)

possibilities. So how often does a 6 appear? A 6 occurrs whenever σ(k) < σ(k +

1), that is for each ascent of σ.
This immediately leads to

xn =
∑

λ=0

n−1
〈

n

λ

〉(

x+ λ

n

)

.

Note that
(

x

n

)

=
xn

n!

gives a close relation to the rising factorials, and that

(

x

n

)

,
(

x+ 1
n

)

,� ,
(

x +n− 1
n

)

form a basis of the polynomials of degree less or equal then n. This follows easily from our rep-
resentation of xn, and from

∆x

(

x

n

)

=
(

x +1
n

)

−
(

x

n

)

=
∆xx

n

n!
=

xn−1

(n− 1)!
=
(

x

n− 1

)

,

which also is immediate from the recurrence of the binomial coefficients (generalized to non-inte-
gral x).

Example 1. Let’s use our result to find a formula for

∑

x=1

N

xn.
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Clearly, from above

∆x

(

x +λ

n

)

=
(

x+ λ

n− 1

)

,

and hence
∑

x=1

N
(

x+ λ

n

)

=
(

N + 1 +λ

n + 1

)

−
(

1+ λ

n + 1

)

.

Finally,
∑

x=1

N

xn =
∑

λ=0

n−1
〈

n

λ

〉

∑

x=1

N
(

x + λ

n

)

=
∑

λ=0

n−1
〈

n

λ

〉(

N + λ+ 1
n+ 1

)

.

4 Differentiating the Geometric Series

We have encountered the operator x D, which sometimes is called the Euler operator, when
studying generating functions. If

{an}/ogf F , then {n an}/ogf (x D)F .

Let’s apply xD to the most basic generating function, namely the geometric series.

(x D)
1

1− x
=

x

(1− x)2

(x D)2
1

1− x
=

x

(1− x)3
(1+ x)

(x D)3
1

1− x
=

x

(1− x)4
(

1+ 4x+ x2
)

(x D)4
1

1− x
=

x

(1− x)5
(

1+ 11x + 11x2 +x3
)


(x D)n 1

1− x
=

x

(1− x)n+1

∑

k=0

n−1
〈

n

k

〉

xk.

Proof. It follows from induction that

(xD)n =
∑

k

{

n

k

}

xk Dk.

Clearly,

Dn 1

1− x
= (− 1)n n!

(1− x)n+1 .

Now proceed as in [Stopple, 2003]. �

5 Occurrence in Probability Theory

Recall that
∑

k

〈

n

k

〉

= n! so normalizing the Eulerian numbers gives probability weights. They

appear in the following way. Let Xj be independent random variables with uniform distribution
on [0, 1]. Then the Eulerian numbers give the probability that sums of these random variables
take values in intervals of unit length.

1

n!

〈

n

k

〉

=P

(

∑

j=1

n

Xj ∈ [k, k + 1]

)

.

That may be checked by showing that these probabilities obey the same recurrence. By the cen-
tral limit theorem this identity implies that the probability weigths induced by the Eulerian
numbers approach a normal distribution (after proper normalizing). To be precise, by the cen-
tral limit theorem

lim
n→∞

P

(

∑

j=1

n
Xj − 1/2

n/12
√ 6 x

)

= Φ(x).
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This justifies the following estimate

〈

n

k

〉

≈n!

(

Φ

(

k + 1−n/2

n/12
√

)

−Φ

(

k −n/2

n/12
√

))

,

which is not to be read in an asymptotic sense.

6 Relations

We have, see [Stopple, 2003], the following explicit formula due to Euler himself,

〈

n

k

〉

=
∑

j=0

k

(− 1)j
(

n + 1
j

)

(k + 1− j)n.

This identity allows us to find closed expressions for the Eulerian numbers when the number of
ascents k is fixed. For example

〈

n

1

〉

= 2n −n− 1
〈

n

2

〉

= 3n − (n +1) 2n +
(

n+ 1
2

)

.

The identity also provides us with the asymptotics for fixed k, namely

〈

n

k

〉

∼ (k + 1)n, as n→∞.

Let Bn be the Bernoulli numbers (that is Bn/n! are the coefficients of the Taylor series of x/
(exp(x)− 1)). Then for n> 1,

∑

k

(− 1)k+1
〈

n

k

〉

= 2n+1
(

2n+1− 1
)Bn+1

n+ 1
.

For details see [Stopple, 2003]. Note that this is also a connection to the Riemann ζ-function
since

ζ(−n)=−
Bn+1

n +1
.

7 Generating Functions

For n > 1 we have
〈

n

k

〉

=

[

xn yk+1

n!

](

1− y

1− y e(1−y)x

)

,

or more precisely, see [Carlitz, 1976],

1 +
∑

n,k>1

An,k
xn yk

n!
=

1− y

1− y e(1−y)x
.

We also have the following generating function, cf. [Carlitz, 1978],

〈

r + s + 1
r

〉

=

[

xr ys

(r + s + 1)!

]

ex − ey

x ey − y ex
.

The numbers on the left-hand side are used to define the symmetrically indexed Eulerian num-
bers

A[r,s] ,
〈

r + s +1
r

〉

=
〈

r + s + 1
s

〉

= A[s,r].

Then
ex − ey

x ey − y ex
=
∑

r,s>0

A[r,s]
xr ys

(r + s + 1)!
.
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