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Abstract

These notes complement a seminar talk I gave as a student at TU Darm-
stadt as part of the StuVo (Studentische Vortragsreihe), Dec 10, 2007.
While this text is meant to be informal in nature, any corrections as well
as suggestions are very welcome.

We discuss some ways to add infinitesimals to our usual numbers, get
acquainted with ultrafilters and how they can be used to construct
nonstandard extensions, and then provide an axiomatic framework for
nonstandard analysis. As basic working examples we present nonstan-
dard characterizations of continuity and uniform continuity. We close
with a short external look at the nonstandard integers and point out
connections with p-adic integers.

1



1 Introduction

1.1 Approaches to Getting Infinitesimals

One aspect of nonstandard analysis is that it introduces a new kind of numbers,
namely infinitely large numbers (and hence infinitesimally small ones as well).
This is something that may be philosophically challenging to a Platonist. It's
not just that we are talking about infinity but its quality here is of a particular
kind. When we have a never-ending process, like counting the natural numbers,
we talk of potential infinity . This �counting never ends� can be formalized as

8x2N9y y >x;

and is usually philosophically well accepted by most people. By contrast, the
actual infinity of nonstandard numbers corresponds to the statement that

9y8x2N y >x;

and usually troubles people more easily. On the other hand, mathematicians
like Euler, Leibniz or Newton had a very good conceptual understanding of
infinitesimals. It wasn't before 1961, however, that they were rigorously intro-
duced into mathematics as formal objects by Robinson, see also [Rob67]. But
Robinson's approach does more than just introduce infinitesimals and therefore
justifying the non-Archimedean approach prevailing before the "-� infection by
Weierstrass around 1850. It enriches all infinite structures as well and turns
out to be very suitable for applications in fields like topology or probability
theory where a metric concept is absent in the first place.

In 1934 Skolem pointed out that the natural numbers can't be characterized
as a first-order theory. The unusual structures satisfying the same properties
as the natural numbers are therefore called nonstandard models of arithmetic.
Since we learned a lot about (in)completeness in the previous talk we start by
showing how logic leads to nonstandard models. In the sequel, however, we
will try to be more �constructive�.

Example 1.1. Recall Gödel's incompleteness theorem. In one guise it states
that every consistent first-order theory that includes arithmetic cannot prove
its own consistency. Starting with the usual axioms of Peano arithmetic1, PA
for short, we can add its inconsistency :Con(PA) as an axiom (we're very
informal here). If PA is consistent then so is PA ^ :Con(PA). Obviously, a
model for the latter can't be our usual (or standard) natural numbers. Hence
we must have obtained a nonstandard model of the natural numbers. But well,
that was kind of magic. What do we know about this model after all?

1. Note that in PA the second-order induction axiom is replaced by a first-order induction schema
which consists of one axiom for each of the countably many formulas in PA.

2 Nonstandard Analysis



Example 1.2. There is another common way to get nonstandard models with
the help of logic and the so-called compactness theorem. Gödel's compactness
theorem roughly states that a set of axioms has a model if and only if every
finite subset of these axioms has a model. Let's start with PA arithmetic again
and consider the theory obtained by adding an element c to the signature of
PA as well as the following axioms

c> 1; c > 1+ 1; :::

Every finite subset of these axioms clearly has a model, namely the natural
numbers N with a big element c 2 N exhibited. The compactness theorem
then asserts that there also exists a model satisfying all the above axioms.
Forgetting the special role of c, this gives a nonstandard model for PA. While
this was still rather magical, we at least have an infinitely large element c at
hand.

Remark 1.3. We cannot resist to demonstrate at least one cool and inspiring
implication based on the compactness theorem. Namely, if a statement S
(first-order, of course) is true for every field of characteristic 0 then it is true
for every field of characteristic p as long as p is big enough. Just note that the
assumption implies that

:S; field axioms; 1+ 1=/ 0; 1+1+1=/ 0; :::

is not satisfiable. By the compactness theorem a finite subset of these state-
ments isn't satisfiable already.

Remark 1.4. By the way, ZF proves that Gödel's compactness theorem as
well as Gödel's completeness theorem are equivalent to the ultrafilter theorem.
So in the case that you despise our later use of the ultrafilter theorem to
construct nonstandard models, you should feel uncomfortable with this part
of mathematics as well.

On the other hand, it is easy to introduce infinitely large objects that serve
some specific but limited purpose. We present some examples in the hope that
they will increase our appreciation of the nonstandard world that Robinson
invited us to.

Example 1.5. For example, see [O'D05], we can extend the ordered abelian
group Z of integers to Z2 by adding a second coordinate and using lexico-
graphic ordering. Then elements with a nonzero second component could be
called infinite since each of them is indeed larger than any copy (n;0) of a usual
integer n2Z. While we are able this way to preserve the group structure and
the ordering of Z, chances are that these infinite numbers won't make us too
happy. They can't even be multiplied.
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Example 1.6. We can extend the previous example to allow for multipli-
cation. Note that the previous construction could have been obtained in the
following way: Starting with Z and a symbol c we interpret c as being larger
than any integer. Then we fill in all the additional stuff which is needed to
get addition to work like 2c+1. What we end up with is Z+Z c=�Z2, just as
in the previous example. Since we also want to have multiplication, we again
fill in all the additional stuff needed for multiplication, for instance c2+ 1. It
won't come as a surprise that we get the polynomial ring Z[c]. But, oh well,
true happiness is hard to achieve, and this world of infinite numbers still isn't
good enough for us. We can't even talk about 2c. As before we could keep
going in the same fashion but the resulting structure will always be too small
(even if we kept doing that infinitely often, see [Kos96] where the inherent and
provable complexity of �true� infinitesimals is discussed).

At this point we can already feel that there is going to be some trouble with
the nonstandard worlds of integers. Namely, they are going to be very large. In
fact, every nonstandard model of the integers that obeys the transfer principle
is going to be uncountably large. That's why use of the axiom of choice or a
slightly weaker axiom will be needed to shed some light.

Example 1.7. Another way to get infinitesimals into play is to consider the
ring of dual numbers

R , R["]/("2);

that is we introduce a new quantity " that squares to 0. While such a property
of a number might seem strange at first, this is actually found in computers
when they do numerical calculations with finite precision. Because of the finite
precision there is a smallest positive number which hence has to square to 0.
We can then write

(x+ ")2=x2+2x":

Similarly, for any polynomial we get f(x+ ") = f(x) + :::" and we can define
::: as the derivative of f(x). To handle a broader class of functions, including
the trigonometric ones, in this way we can postulate that

exp(")= 1+ ":

Then also cos(") = 1 and sin(")= 0, so that

cos(x+ ")= cos(x)cos(")¡ sin(x)sin(")= cos(x)¡ sin(x) "
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whence the derivative of cos(x) is ¡sin(x). This approach has actually been
used for example in a freshmen calculus class as described in [Hoo07]. It can
be adapted to handle higher order derivatives or multiple variables. An appli-
cation to elliptic curves can be found in [Bel07].

1.2 The Use of Infinitesimals

There are several reasons why one would wish to have infinitesimal numbers
at hand together with a rigorous foundation. We only state a few.

Resurrection of the Good Old Days. With infinitesimal numbers the
arguments of mathematicians like Leibniz, Newton or Euler can finally
be made rigorous.

Better Understanding of the Standard World. In the words of
Kossak [Kos96], �we can compute anything we want without irrationals,
but we could never understand geometry and calculus without them�. In
the same spirit nonstandard thinking can illuminate our understanding
of the standard world.

Improving the Teaching of Mathematics. Indicated by the fact that
mathematicians like Euler used infinitesimals in their reasoning (suc-
cessfully despite the lack of a firm foundation), it is often argued that
a nonstandard approach to teaching calculus may be easier to under-
stand for students. At any rate, there are excellent books, for instance
[Kei00], that demonstrate that calculus can be taught using infinites-
imals instead of sequences or "-� concepts. As an informal example,
continuity of x 7!x2 is derived as

(x+ d)2= x2+2dx+ d2�x2:

Enrichment of the Mathematical Environment. Nonstandard
objects are worth considering in their own right. We'll for example
take a closer look at the hyperintegers �Z at the end of this text. For
another example consider �R� �R. It forms a model for plane Euclidean
geometry. But when we restrict to finite points in both coordinates
we get a plane, called the Dehn plane, that violates the parallel pos-
tulate (for instance a line through (0; 1) with infinitesimal slope won't
meet the x-axis).

Automatic "-� Management. As illustrated in [Tao07] the use of non-
standard analysis can make arguments more succinct and understand-
able. This is in particular true for arguments that make heavy use
of interdependent "i's and �i's.
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2 Diving In

2.1 Limits and Ultrafilters

This section is heavily based on [Tao07]. Given a nice sequence (xn) we can
talk about its limit lim xn (nice meaning convergent here). This limit can be
interpreted, as Tao does, as the outcome of a voting system. Every natural
number n votes for the candidate xn, and the voting system then chooses limxn
to be the winner. The limit has several properties, including:

(a) lim is an algebra homomorphism, that is

lim an+ bn = lim an+ lim bn;

lim can = c lim an;

liman bn = lim an lim bn:

(b) lim is bounded as follows

inf xn6 limxn6 supxn:

(c) lim is non-principal , that is limxn= lim yn whenever the sequences (xn)
and (yn) differ at finitely many indices only.

(d) lim is shift-invariant , that is for all shifts h2N we have

limxn+h= limxn:

Remark 2.1. Notice that the shift-invariance of lim actually implies that lim
is non-principal. However, boundedness, and the non-principality alone suffice
to characterize lim . To see this, take a sequence (xn) that converges to x1.
For any " we find h2N such that after setting the first h values of (xn) to x1
we have

x1¡ "< inf xn6 supxn<x1+ "

whence the only candidate for limxn is x1.

Can we give a definition of a limit that satisfies the above conditions and that
applies to more than just the usually convergent sequences? More specifically,
can we define such a limit for merely bounded sequences?

Example 2.2. Consider the sequence (xn)= (0; 1; 0; 1; 0; 1; :::). It is certainly
bounded, and by the algebra homomorphism property of lim , we have limxn=

(limxn)2. Hence the only candidates for limits are 0 and 1. On the other hand,
using the algebra homomorphism property and the shift-invariance we get the
contradiction

limxn= limxn+1= lim 1¡xn=1¡ limxn
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which would imply that limxn=1/2.

So we see that we have to abandon either the algebra homomorphism prop-
erty or the shift-invariance of lim . We dismiss shift-invariance. In the voting
interpretation this means that we give up the fairness of the election (which
means arbitrary choices in the voting system which, as Tao points out, can be
taken as a first hint that the Axiom of Choice might get involved).

Suppose we found such an extension of lim to bounded sequences. Let's
consider what happens when we apply lim to boolean sequences only, that is to
sequences that take only values 0 and 1. By the algebra homomorphism prop-
erty (as before) we find that for a boolean sequence (xn) the only candidates
for limxn are 0 and 1. Such a sequence can be represented by its indicator set
A= fn 2N: xn= 1g, and we can consider the collection F of those indicator
sets A such that limxn=1 (those voters that can decide an election by voting
in unison). Using the homomorphism property as well as boundedness and
non-principality we easily derive the following properties of F :

(a) F is an upper set, that is

A2F ;B�A =) B 2F :

(b) F is closed under finite intersections,

A;B 2F =) A\B 2F :

(c) F is dichotomous, that is for A�N exactly one of the following holds

A2F _ Ac2F :

(d) F is non-principal meaning that changing a set A by finitely many
elements doesn't affect whether A2F .

The first two conditions state that F is a filter , the third adds that it is in fact
an ultrafilter and the last one exclude the principal filters (which are just all
the sets containing a particular index, and which correspond to a dictator in
the voting interpretation).

On the other hand, given an ultrafilter F on a set I we can define F -limxn for
a sequence (xn) taking values in f0; 1g by setting

F -limxn=1 () fn2 I: xn=1g2F ;

and F -lim xn = 0 otherwise. Then F -lim satisfies the properties discussed
above. Whenever we have a property p(n), like xn=1 here, we say that p(n)
holds w.r.t. F if fn2I: p(n)g2F . The properties of an ultrafilter translate into:

(a) (Modus-Ponens) If p(n) ) q(n) then

p(n) w.r.t. F =) q(n) w.r.t. F :
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(b) The closure of F under finite intersections implies that

p(n) w.r.t. F ; q(n) w.r.t. F =) p(n)^ q(n) w.r.t. F :

(c) (Law of the Excluded Middle) Exactly one of the following holds,

p(n) w.r.t. F _ :p(n) w.r.t. F :

Now, given any bounded sequence (xn) we can define F -lim xn as the unique
x such that

jxn¡ xj<" w.r.t. F

for all "> 0.

But wait! We actually obtained an ultrafilter F only under the assumption
that we found an extension of lim to bounded sequences taking values in f0;
1g. So do ultrafilters exist after all?

Theorem 2.3. (UFT) Every filter is contained in an ultrafilter.

Proof. Well, this is independent from ZF but it can be proved very straight-
forward using Zorn's Lemma (which is equivalent to the Axiom of Choice).
Note, however, that the ultrafilter theorem is strictly weaker than both. �

To find a non-principal ultrafilter we can just start with the filter of cofinite
sets. We now present two statements which assert that actually there are
incredibly many ultrafilters on an infinite set (on a finite set X there are only
the principal ultrafilters and hence only jX j many).

Theorem 2.4. An infinite set X allows 22
jX j

many (non-principal) ultrafilters.

Proof. More is not possible any way. The hard part is to construct a set S
of 2jX j subsets of X such that any Boolean combination

s1\ s2\ :::\ sn=/ ;; si2S _ sic2S

is nonempty. Then any subset T �S gives rise to a filter basis

T [fsc: s2S nT g

which in turn define distinct ultrafilters. Of course, there are 2S=22
jX j

many
such subsets T . Finally, note that are only exactly jX j many principal ultra-
filters on X. �
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Corollary 2.5. There are non-isomorphic non-principal ultrafilters on any
infinite set X (two ultrafilters being isomorphic if one arises from the other by
a bijection on X).

Proof. There are no more than 2jX j many bijections on X but 22
jX j

many non-
principal ultrafilters. �

2.2 A First Nonstandard Peak

For the field extension from Q to R what you do is consider all sequences
QN, take the ring of Cauchy sequences, and factor by the maximal ideal fa:
lim a = 0g. Now, what do we get if we start with R, consider the ring of all
sequences RN, and factor by a maximal ideal? Ok, of course we get a field but
what else can we say. Is it for example going to be ordered again? And what
do maximal ideals of RN look like?

Theorem 2.6. Ultrafilters on I are in a 1-1 correspondence with maximal
ideals of RI via

F 7! f(xn)2RI:xn=0 w.r.t. F g:

Whenever F is a principal ultrafilter on N then RN/F =�R and we don't win
anything. That's why we need a non-principal ultrafilter F . Those exist by
the ultrafilter theorem though we'll never be able to describe one explicitly.

Let F be an ultrafilter, and set �R=RN/F . Elements of �R are equivalence
classes of sequences where two sequences (xn) and (yn) are identified whenever
xn= yn w.r.t. F . We denote the equivalence class of a sequence (xn) by [xn].
R is embedded in �R by identifying a real number x with the sequence that is
constantly x. We write [xn]6 [yn] whenever

xn6 yn w.r.t. F

which gives a well-defined binary relation on �R.

Corollary 2.7. �R is a totally ordered field.

Proof. By the preceding theorem, �R is the quotient of the ring RN by a
maximal ideal and hence a field. Alternatively, we can check the axioms for a
field, use their validity in R and then use the logic w.r.t. F to deduce them for
�R. We only prove the existence of inverses. Given a sequence (xn) such that
[xn]=/ 0, we define (yn) by yn=xn

¡1 if xn=/ 0 and yn=0 otherwise. Then for all n

xn=/ 0 =) xn yn=1:
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Thus the logic w.r.t. F implies

[xn] =/ 0 =) xn=/ 0 w.r.t. F
=) xn yn=1 w.r.t. F
=) [xn] [yn] = 1

whence [yn] is the inverse of [xn].

That 6 is a total order is again just checking the axioms for a total order. For
instance, given sequences (xn) and (yn) we know that for each n either xn<yn,
xn= yn, or xn> yn. Thus it follows that we have exactly one of the cases

xn< yn w.r.t. F ; xn= yn w.r.t. F ; xn> yn w.r.t. F ;

that is exactly one of [xn]< [yn], [xn] = [yn], [xn]> [yn].

Compatibility with the field operations follows from the logic w.r.t. F as well.
Let for example (xn); (yn); (zn) be sequences. Since R is an ordered field we
have for each n that

xn6 yn^ zn> 0 =) xn zn6 yn zn:

Thus we employ the logic w.r.t. F to get

[xn]6 [yn] ^ [zn]> 0 =) xn6 yn w.r.t. F ^ zn> 0 w.r.t. F
=) xn6 yn^ zn> 0 w.r.t. F
=) xn zn6 yn zn w.r.t. F
=) [xn] [zn]6 [yn] [zn]:

Basically what we observe is that statements in R pass over to statements in
�R. �

Our initial goal was to extend the real numbers so that we have infinitesimals
at hand. Did we achieve this goal? Well, consider the sequence (xn)= (1; 1/2;
1/3; :::). If F is a non-principal ultrafilter then

(8"2R+) [xn]<"

because only finitely many of the xn are larger than any fixed ". Hence [xn] is
an infinitesimal.

So we succeeded in extending the real numbers as an ordered field to the
nonstandard field �R which contains infinitesimal and infinite numbers. We
could go on from here, for instance lift functions R!R to functions �R! �R,
make explicit what kind of statements over R transfer to statements over �R
and lots more. This ultrapower construction is described in detail in [LR94].
Here we'll switch to an axiomatic approach now that hopefully some credibility
in the possibility of such a construction is won.
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2.3 An Axiomatic Approach

Starting with our usual mathematical world, we want to construct a nonstan-
dard extension of this world, in which it is more fun to fool around. Since we
know about the sneaky trap of playing with the set of all sets, we cave in and
reduce our usual mathematical world to be based on the set of all �reasonable�
sets (in a sense that most mathematicians stay reasonable most of the time).
More details of the axiomatic approach exposited here and how to work with
it can be found in [ST99].

Definition 2.8. (Superstructure) Let S be a set, and define V0(S)=S and
inductively Vn+1(S)=Vn(S)[P(Vn(S)). The superstructure V (S) of S is

V (S)=
[

n2N
Vn(S):

We usually choose S =R. The superstructure V (R) entails lots of the math-
ematical world that we use to work in (recall that tuples, relations, functions
and pretty much anything else can be encoded as a set). Our goal is to extend
this superstructure to some strictly larger one, namely V (�R) such that true
statements in V (R) transfer to true statements in V (�R). �R can be con-
structed as in the preceding section, and some details need to be considered
to define how to embed the whole of V (R). We have to be a bit careful about
what statements we can transfer. These are formulas in which quantification
is always bounded, that is quantification appears in the forms (8x 2 A) and
(9x 2 A) only. The forms (8x) or (9x) are said to be unbounded and are
not allowed. Such formulas are called bounded quantifier formulas. We write
�(x1; :::; xn) to denote a formula with free variables x1; :::; xn.

Definition 2.9. (Nonstandard Model) Let S be an infinite set. A map

�:V (S)!V ( S� ); A 7! A�

is a nonstandard extension if it satisfies the following three axioms.

Extension Principle. s� = s for all s2S.

Transfer Principle. For every bounded quantifier formula �(x1; :::; xn)

and all A1; :::; An2V (S),

�(A1; :::; An) is true in L(V (S))
() �(A� 1; :::; A� n) is true in L(V ( S� )):

Saturation Principle. The extension is nontrivial, that is S� )S.

To get a feeling how to work in the setting of a nonstandard extension we prove
some basic properties.
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Proposition 2.10. (Basic Properties of �) Let � be a nonstandard exten-
sion.

(a) � is injective.

(b) � preserves the usual boolean operations, i.e. for sets A;B 2V (S)

�(A[B)= A� [ B� ; �(A\B)= A� \ B� ; �(AnB)= A� n B� :

(c) �fa1; :::; ang= f a� 1; :::; a� ng for all ai2V (S).
(d) If f :A!B is a function between sets A;B 2V (S) then f� is a function

A� ! B� .

Proof.

(a) Let A� = B� for A;B 2V (S). By transfer A=B.

(b) We prove the claim for unions. The other statements can be handled
the same way. Let C = A [ B. Choose n such that A; B; C � Vn(S).
Then the following is true in L(V (S))

(8x2Vn(S)) (x2C , (x2A_x2B))

and transfer yields

(8x2 V� n(S)) (x2 C� , (x2 A� _x2 B� ))

in L( V� (S)). Since (also by transfer) A� ; B� ; C� � V� n(S), the latter
amounts to saying C� = A� [ B� .

(c) Let A= fa1; :::; ang. Then

(8a2A)a= a1_ :::_ a= an

is true. By transfer

(8a2 A� )a= a� 1_ :::_ a= a� n

is true as well which shows that �fa1; :::; ang= A� = f a� 1; :::; a� ng.
(d) Since we didn't even discuss how to encode a function as a set we won't

provide a proof but hope for the reader's belief (or willingness to work
it out as an exercise). �

2.4 Basic Usage

As for the explicit construction based on ultrafilters we have the following.

Theorem 2.11. �R is a totally ordered field which properly extends R.
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Proof. We have to check lots of properties of �R but all of them follow from
the respective property of R. For instance the commutativity of addition in
�R formalized as

(8x; y 2 �R)x +� y= y +� x

follows from transfer of

(8x; y 2R)x+ y= y+ x: �

Since �R was build to contain infinitely large numbers, we don't expect it to
be Archimedean. But why doesn't this property follow by transfer as well?
Because the statement

(8x2R)(9n2N)n>x

transfers to

(8x2 �R)(9n2 �N)n >� x

which just asserts that �R is �hyper�-Archimedean.

Since it shouldn't lead to any confusion we'll just write + instead of +� , and
similarly for other symbols like <, j�j and so on. We introduce the following
intuitive language.

Definition 2.12. Let x; y 2 �R.

� x is called finite if jxj6n for some n2N, and infinite otherwise.

� x is called infinitesimal if 1/x is infinite.

� x and y are said to be infinitesimally close, denoted by x� y, if x¡ y

is infinitesimal.

We just note that intuitively true statements like �finite+finite=finite� are just
as easily derived from these definitions. But one question lingers: Do there exist
infinite numbers at all, or are we talking in a sophisticated way about empty
attributes here?

Theorem 2.13. �N¡N=/ ; and every h2 �N¡N is infinite.

Proof. Let h 2 �N ¡ N. To prove that h is infinite we have to show that
h > n for all n 2 N. We prove h > n inductively. Clearly, h > 1 since
1 2 N. Suppose that h > n. By transfer, h > n + 1 (consider the formula
(8m2N)m>n)m>n+1 and recall that n� =n). But n+12N and hence
h>n+1.
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We now prove that �N ¡ N =/ ;. Assume otherwise that �N = N. Since the
rationals are dense in R we have the following true statement

(8x2R)(8n2N)(9r; s; t2N)
������x¡ r¡ s

t

������< 1
n

which under the assumption �N=N transfers to

(8x2 �R)(8n2N)(9r; s; t2N)
������x¡ r¡ s

t

������< 1
n
:

Let x 2 �R. We thus find a sequence xk 2Q such that jx ¡ xnj < 1/n. This
makes (xn) a Cauchy sequence which hence converges to some x1 2R. Note
that

jx¡x1j6 jx¡xnj+ jxn¡x1j! 0 as n!1:

In particular, jx¡x1j< 1/n for all n2N= �N. The transfer of

(8x; y 2R)((8n2N)jx¡ y j< 1/n) =) x= y

now yields that x= x12R. But then �R�R which is a contradiction. �

This language is very nice for defining notions as limits, accumulation points,
continuity or uniform continuity.

Theorem 2.14. Let (xn) � R be a sequence and x 2 R. The following are
equivalent.

� limxn= x if and only if x� h�x for all h2 �N¡N.

� x is an accumulation point of (xn) if and only if x� h � x for some
h2 �N¡N.

Proof. We only prove the first statement. Suppose first that lim xn= x, and
let h2 �N¡N. Then for any "2R+ we find n0 such that

(8n2N) n>n0 =) jxn¡xj<":

This transfers to

(8n2 �N) n>n0 =) j x� n¡xj<":

Since h>n0 and " was arbitrary this implies that 1/ j x� h¡xj>n for any n2N,
and hence x� h�x as claimed.

Now suppose that x� h�x for all h2 �NnN. Let "2R+. Then

(9n02 �N)(8n2 �N) n>n0 =) j x� n¡xj<"
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holds, and hence by transfer

(9n02N)(8n2N) n>n0 =) jxn¡xj<"

which proves that limxn=x. �

Theorem 2.15. Let D�R, x02D, and f :D!R be a function. The following
are equivalent.

� f is continuous in x0.

� (8x2 D� ) x� x0 =) f� (x)� f(x0).

Proof. The proof is along the lines of the previous one. We give it anyway.

First, let f be continuous in x0. Let "2R+. We find � 2R+ such that

(8x2D) jx¡x0j< � =) jf(x)¡ f(x0)j<":

This transfers to

(8x2 D� ) jx¡x0j< � =) j f� (x)¡ f(x0)j<":

Let x2 D� such that x�x0. The condition jx¡x0j<� is then trivially satisfied
for any choice of ". We thus have that j f� (x)¡ f(x0)j< " for all " 2R+, and
hence f� (x)� f(x0).

Now suppose that f� (x)� f(x0) for all x2 D� such that x�x0. Let "2R+. Then

(9� 2 �R+)(8x2 D� ) jx¡x0j< � =) j f� (x)¡ f(x0)j<"

holds, and hence by transfer

(9� 2R+)(8x2D) jx¡x0j< � =) jf(x)¡ f(x0)j<"

which proves that f is continuous at x0. �

Theorem 2.16. Let D�R, and f :D!R be a function. The following are
equivalent.

� f is uniformly continuous.

� (8x; y 2 D� ) x� y =) f� (x)� f� (y).

Proof. The proof is almost exactly the previous one. Again, we give it anyway.

First, let f be uniformly continuous. Let "2R+. We find � 2R+ such that

(8x; y 2D) jx¡ y j< � =) jf(x)¡ f(y)j<":
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This transfers to

(8x; y 2 D� ) jx¡ y j< � =) j f� (x)¡ f� (y)j<":

Let x; y2 D� such that x� y. The condition jx¡ y j<� is then trivially satisfied
for any choice of ". We thus have that j f� (x)¡ f� (y)j< " for all " 2R+, and
hence f� (x)� f� (y).

Now suppose that f� (x)� f� (y) for all x; y 2 D� such that x� y. Let "2R+.
Then

(9� 2 �R+)(8x; y 2 D� ) jx¡ y j< � =) j f� (x)¡ f� (y)j<"

holds, and hence by transfer

(9� 2R+)(8x; y 2D) jx¡ y j< � =) jf(x)¡ f(y)j<"

which proves that f is uniformly continuous. �

All these examples show that using nonstandard language we can define stan-
dard notions not only in an intuitive way but even in a more succinct form
that allows to focus on the essentials.

2.5 The Source of Nonstandard Strength

Let's take another look at the hypernatural numbers �N. We proved before
that �N¡N=/ ; and every h2 �N¡N is infinite. In particular, for infinite h
also h¡ 12 �N¡N is infinite. Therefore, �N¡N has no minimal element!

What is going on here? Any subset of N has a minimal element. Shouldn't
this by transfer be true for �N as well? To understand this, look what happens
when we transfer statements from R to �R. For example

(8m2A):::(9n2B):::

transfers to

(8m2 A� ):::(9n2 B� ):::

Objects of the form A� are called standard , and we observe that after transfer
we talk about elements of standard objects A� only. Those are called internal .
Since �fAg= fA� g standard objects are internal.

Remark 2.17. It's not hard to see that the set Vint( S� ) of internal objects is

Vint( S� )=
[

n2N
V� n(S):
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Objects that are not internal are called external . Vaguely, external objects
are those that exist in the nonstandard model but which can not be accessed
by transfer. �N ¡ N is an example of an external object. While this might
seem like an obstruction it actually is source for the strength of working with
nonstandard models. What would we win when it behaved exactly the same as
our standard world? No, it's great that it doesn't, and essentially what we gain
is the possibility to talk about an object being standard, that is of the form
A� , or not. In ZF we only have the binary relation 2 but in the nonstandard
model we also have this unary relation st that expresses whether an object is
standard.

Remark 2.18. In fact, nonstandard analysis can be build axiomatically around
this unary relation st and some axioms how to work with it. This approach was
first used by Nelson who introduced his internal set theory IST as an extension
of ZF. See for instance [Nel87] where he uses IST to develop probability theory.

2.6 Stronger Nonstandard Models

The saturation property which asserts that S� )S can be reformulated in the
following equivalent way, see [LR94]. For any countable family of standard sets
(A� n)n2I that has the finite intersection property,

\

n2I
A� n=/ ;:

Example 2.19. Contrast this with the situation in the standard world. For
instance the family (N ¡ f1; :::; ng)n2N clearly has the finite intersection
property but still has empty intersection. Set Bn , N¡ f1; :::; ng. Observe
that

(8n;m2N) n>m =) Bn�Bm:

Let h2 �N¡N. By transfer, B� h� B� n for any n2N. Hence,

B� h�
\

n2N
B� n:

Also by transfer B� h=/ ;.
For a countable family of standard sets that has the finite intersection property
we can do the first-entry decomposition to obtain a decreasing sequence of sets.
By the same argument as in this example we then find that the intersection of
the nonstandard sets is nonempty.

Especially in branches like topology or probability theory, we would like to
have a stronger version of the above saturation property.
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Definition 2.20. Let � be an infinite cardinal. A nonstandard extension

�:V (S)!V ( S� ); A 7! A�

is said to be �-saturated if the following holds.

�-Saturation Principle. For any family of internal sets (An)n2I of car-
dinality card I 6� that has the finite intersection property,

\

n2I
An=/ ;:

We wish to present an easy example that makes use of a �-saturated nonstan-
dard extension. First recall the Riesz' representation theorem in the following
guise.

Theorem 2.21. Let f :X!R be a continuous linear functional on a Hilbert
space X with inner product (�; �). Then there exists y 2X such that

f(x)= (y; x)

for all x2X.

What if we drop the condition that f is continuous and that we're working in
a Hilbert space? Suppose that we have a �-saturated nonstandard model where
�> jX j. We then have the following extension of the representation theorem,
see [LR94].

Theorem 2.22. Let f :X!R be a linear functional on a pre-Hilbert space X
with inner product (�; �). Then there exists y 2 X� such that

f(x)= �(y; x� )

for all x2X.

Proof. The sets

Cx , fy 2X: f(x)= (y; x)g

where x 2 X are easily checked to have the finite intersection property by
restricting to finite dimensions where Riesz' representation theorem trivially
applies. Thus we find

y 2
\

x2X
C� x;
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or equivalently y 2 X� such that

(8x2X) f� (x)= �(y; x� ):

Since f� (x)= f(x) the claim follows. �

2.7 Studying �Z in its Own Right

The purpose of this section is at least two-fold. Firstly, to demonstrate that
nonstandard objects are interesting objects in their own right. And secondly,
to (hopefully) wet the readers appetite to play with p-adic numbers.

Let p be a prime. The p-adic integers Zp are the inverse limit of the rings Z/ pn.
From a practical point of view they can be regarded as sequences (an)n2N such
that an2Z/pn and am�an (mod pn) whenever m>n. Of course, addition and
multiplication are then given pointwisely.

Remark 2.23. As a set we can also think of Zp as (Z/p)N but then addition
and multiplication are no longer just the pointwise ones. At any rate, we see
that Zp is uncountable.

The integers Z canonically embed into Zp. A number z2Z corresponds to the
sequence of its remainders modulo pn, that is

Z!Zp; z 7! (zmod pn)n2N:

Example 2.24. The number 23 corresponds to (1; 3; 7; 7; 23; 23; :::) in Z2.

Remark 2.25. The invertible elements in Zp are exactly those sequences not
starting with 0. For this reason, the field of fractions Qp of Zp consists of the
elements that can be written as p¡� z for some z 2Zp. Qp is a field extension
of Q which can't be turned into an ordered field.

Remark 2.26. One importance of considering Qp is rooted in number theory.
Certain equations (eg. quadratic forms) satisfy the Hasse principle, that is
they have solutions over Q if and only if they have solutions over R and all
the fields Qp (this is called a local-global principle because a solution in Q is
global in the sense that Q embeds in the Qp and R). Here as well as in other
occasions the p-adic fields naturally occur alongside R.

For every n2N we have the projections Z!Z/n and hence also the induced
projections �Z! Z/n. By the universal property of Zp as the inverse limit
of the Z/pn we have unique morphisms Z!Zp and �Z!Zp which commute
with the canonical projections onto Z/pn. These morphisms are

Z!Zp; z 7! (zmod pn)n2N;
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and

�Z!Zp; z 7! (zmod pn)n2N:

While we saw that the embedding of Z into Zp is injective but definitely not
surjective, the canonical morphism �Z!Zp is no longer injective but surjective.
We thus get that Zp is a quotient of the hyperintegers. Using some analog of
the Chinese remainder theorem, we actually have that

Ẑ ,
Y

p

Zp

is a quotient as well, see [Fes06]. The kernel are those elements of �Z that are
0 modulo any p�. Equivalently, they are multiples of any natural number,
namely

\

n2Z
n �Z

which is a torsion-free divisible abelian group and hence isomorphic to Q(�)

(because it can be viewed as a vector space over Q). In fact,

�Z=� Ẑ�Q(�)

for some �. We thus find that, in particular, the endomorphism ring of �Z is
noncommutative which is a drastic difference to the standard case where the
endomorphisms of Z are isomorphic to Z again.

3 Conclusions

Given a single non-principal ultrafilter (the existence statement is called the
weak ultrafilter theorem) we are able to construct a nonstandard extension as
defined by the above axioms. To further construct �-saturated nonstandard
extensions we can use ultrafilters with special properties which do exist if we
assume the axiom of choice. On the other hand, we could ask if the existence
of nonstandard extensions really requires ultrafilters. Maybe there is another
ultrafilter-free way to construct nonstandard extensions. Well, there is not.
Recall our initial discussion of extending lim to bounded sequences. We con-
cluded that such an extension would give rise to a non-principal ultrafilter.
But given a nonstandard extension � and some infinite h 2�N we can define
for a bounded real sequence (xn)

h-limxn , st(�xh)
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where st(x) denotes the unique real number x02R such that x�x0. It's easy to
check that the so-defined h-lim is an extension of lim in the above sense. Thus
we canonically get a non-principal ultrafilter from any nonstandard extension.

On the other hand, if we are willing to give up things like commutativity and
invertibility we can do without ultrafilters. Basically, we can replace the non-
principal ultrafilter on N in our construction by the filter of cofinite sets. A
few more details can be found in [Con07] and [Tao07].
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