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Abstract

We explicitly determine the Apéry limits for the sums of powers of binomial
coefficients. As an application, we prove a weak version of Franel’s conjecture
on the order of the recurrences for these sequences. Namely, we prove the
conjectured minimal order under the assumption that such a recurrence can
be obtained via creative telescoping.

1 Introduction

More than a century ago, Franel [Fra94, Fra95] investigated the sums of integral
powers of binomial coefficients

A(s)(n) =
n∑
k=0

(
n

k

)s
. (1)

The special cases A(1)(n) = 2n and A(2)(n) =
(
2n
n

)
are simple. On the other hand, the

numbers A(3)(n), known as Franel numbers [Slo21, A000172], cannot be expressed as
a finite linear combination of hypergeometric terms [PWZ96, p. 160]. We will refer to
the numbers A(s)(n) as the generalized Franel numbers. Long before the computer-
algebra era, Franel [Fra94] computed recurrences for A(3)(n) as well as, in the second
note [Fra95], for A(4)(n). Based on these findings, he predicted — quite optimisti-
cally — a general shape of the recursion for general s. Since then, explicit recurrences
for A(s)(n) have been computed using creative telescoping by Perlstadt [Per87] for
s = 5, 6 and, likewise, by McIntosh [McI89] for s ≤ 10. Creative telescoping, which
we briefly review in Section 2, is a powerful computer-algebra technique that can,
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for fixed integer s, algorithmically determine a recurrence satisfied by A(s)(n). More
specifically, given a hypergeometric term like a(n, k) =

(
n
k

)s
, it produces an operator

P (n,N) (here, N is the shift operator in n: Na(n, k) := a(n + 1, k)), as well as
another hypergeometric term b(n, k), such that

P (n,N)a(n, k) = b(n, k + 1)− b(n, k). (2)

Summing the relation (2) (with some care and under some mild assumptions; see
the beginning of Section 2) over all integers k, the contribution of b(n, k) tele-
scopes away, allowing us to conclude that A(s)(n) is annihilated by the operator
P (n,N); in this case, we say that A(s)(n) satisfies the telescoping recurrence equa-
tion P (n,N)A(s)(n) = 0. Notice that this telescoping equation is based on the
representation (1), as it uses the operator P (n,N) for the hypergeometric term
a(n, k) =

(
n
k

)s
. Using a different hypergeometric representation — and such exist

(for example, A(3)(n) =
∑n

k=0

(
n
k

)2(2k
n

)
) — may potentially lead to a different opera-

tor.
Franel’s suspicions about the form of linear recurrence with polynomial coeffi-

cients for A(s)(n) are not supported by computations in [McI89, Per87] with the
exception of one particular aspect, its order. Specifically, Franel conjectured it to
be equal to b(s + 1)/2c. While the fact that the order of the recurrence is bounded
from above by this quantity is shown to be true by Stoll [Sto97], who indicates that
the earlier proof of Cusick [Cus89] has a gap, it remains open to demonstrate that,
in general, no recurrence of lower order exists. The possibility for A(s)(n) for s ≥ 3
to satisfy a recurrence of order 1, equivalently, to be a hypergeometric term in the
single variable n, can be ruled out using the algorithm Hyper [PWZ96], when s is
fixed. On the other hand, using congruential properties, Yuan, Lu and Schmidt
[YLS08] prove that, for any s ≥ 3, the sequence A(s)(n) cannot satisfy a recurrence
of order 1. This implies that Franel’s recurrences of order 2 for s = 3 and s = 4
are of minimal order. In general, to prove that the order b(s + 1)/2c recurrence
constructed in [Sto97] for the sequence A(s)(n) is of minimal order, it is sufficient to
show that the corresponding recurrence operator is irreducible (though this is not
a necessary condition). For fixed (and sufficiently small) s, the latter task is again
accessible for modern computer-algebra algorithms [Bro94, ZvH19] (for an explicit
example of bounding the possible degree of a lower-order recurrence, we also refer to
the proof of Proposition 8.4 in [BBMKM16, pp. 692–694]). One goal of this paper is
to address the problem for generic s by showing the following general result.

Theorem 1.1. Any telescoping recurrence satisfied by A(s)(n) based on the repre-
sentation (1) has order at least b(s+ 1)/2c.
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In particular — in light of [Sto97] — this implies that Franel’s conjecture on the
exact order is true if the minimal-order recurrence satisfied by A(s)(n) is a telescoping
recurrence equation. We refer to Remark 4.1 for evidence that this is the case.

Remark 1.2. One way of establishing lower bounds on the order of recurrences
satisfied by aD-finite sequence A(n) comes from the observation by McIntosh [McI89,
Section 4.1, p. 27] that, if the sequence has the property that A(n + 1)/A(n) → µ
where µ is an algebraic number of degree d, then A(n) cannot satisfy a recurrence
defined over Q of order less than d. For the generalized Franel numbers A(s)(n),
however, it follows from (21) that A(s)(n + 1)/A(s)(n)→ 2s, so that this criterion is
of no help.

Apéry’s groundbreaking proof [Apé79, Poo79] of the irrationality of ζ(3) is centred
around the fact that

lim
n→∞

B(n)

A(n)
=
ζ(3)

6
, (3)

where the sequences

A(n) =
n∑
k=0

(
n

k

)2(
n+ k

k

)2

(4)

and B(n) both are solutions to the three-term recurrence

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1 (5)

with initial conditions A(0) = 1, A(1) = 5 as well as B(0) = 0 and B(1) = 1. Limits,
like (3), of quotients of solutions to a common linear recurrence are refered to as
Apéry limits. For an introduction to such limits we refer to [CS21] as well as to the
papers [AvSZ08, Yan08]. The main goal of this paper is to explicitly determine the
Apéry limits associated to the generalized Franel numbers A(s)(n). In fact, we will
then prove Theorem 1.1, discussed above, in Section 4 as an application of these
Apéry limits.

It was conjectured in [CS21] that, for s ≥ 2m + 1, the minimal-order recurrence
satisfied byA(s)(n) has Apéry limits that are rational multiples of ζ(2), ζ(4), . . . , ζ(2m).

More precisely, this means that the recurrence has rational solutions A
(s)
j (n), where

j ∈ {0, 1, . . . ,m}, (with A
(s)
0 (n) = A(s)(n)) such that

lim
n→∞

A
(s)
j (n)

A(s)(n)
∈ π2jQ.
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In Theorem 1.3, we prove this conjecture, with the minimal-order recurrence replaced
by the minimal-order telescoping recurrence, and explicitly describe all of these Apéry
limits. In particular, in terms of

A(s)(n, t) :=
n∑
k=0

(
n

k

)s [ k∏
j=1

(
1− t

j

) n−k∏
j=1

(
1 +

t

j

)]−s
= A(s)(n,−t), (6)

we identify specific solutions A
(s)
j (n) ∈ Q as the coefficients in the t-expansion

A(s)(n, t) =
∑
j≥0

A
(s)
j (n)t2j. (7)

Theorem 1.3. Any telescoping recurrence satisfied by A(s)(n) based on the repre-

sentation (1) is solved, for large enough n, by the sequences A
(s)
j (n) ∈ Q defined in

(7), where j ∈ {0, 1, . . . , b(s− 1)/2c}. Furthermore, we have

lim
n→∞

A
(s)
j (n)

A(s)(n)
= ϕ

(s)
j π2j, (8)

where ϕ
(s)
j ∈ Q>0 is the coefficient of t2j in the power series of (t/ sin(t))s.

Proof. First, we show in Theorem 2.1 that, for large enough n, A(s)(n, t) satisfies the
telescoping recurrence up to terms that are O(ts). Second, we prove in Theorem 3.1
that

lim
n→∞

A(s)(n, t)

A(s)(n)
=

(
πt

sin(πt)

)s
, (9)

and that the convergence is locally uniform in t (restricted to the unit ball |t| < 1).
Recall that, if analytic functions fn converge locally uniformly to a function f , then
f is analytic and the derivatives of fn converge to the corresponding derivatives of
f . Since the terms on the left-hand side of (9) are analytic in t, locally uniform
convergence allows us to compare the derivatives on both sides, so that (8) follows.
We note that

πt

sin(πt)
=
∞∑
j=1

(
2− 1

22j−2

)
ζ(2j)t2j

=
∞∑
j=1

(
1

22j−1 − 1

)
B2j

(2j)!
(2πit)2j,
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where the expansion in terms of zeta values makes it transparent that ϕ
(s)
j is positive,

while the rationality of the ϕ
(s)
j is obvious from the series rewritten in terms of

Bernoulli numbers.

Example 1.4. Note that A(s)(n, t), as defined in (6), has the initial values

A(s)(0, t) = 1, A(s)(1, t) =
1

(1− t)s
+

1

(1 + t)s
= 2

∑
j≥0

(
2j + s− 1

2j

)
t2j.

Consequently, for j ≥ 1, the sequences A
(s)
j (n) have the initial values A

(s)
j (0) = 0

and A
(s)
j (1) = 2

(
2j+s−1

2j

)
.

Example 1.5. Let us consider the special case j = 1 of Theorem 1.3. As noted in
Example 1.4, we have A

(s)
1 (1) = s(s + 1). In terms of B(s)(n) = A

(s)
1 (n)/A

(s)
1 (1), the

initial values are normalised to B(s)(0) = 0 and B(s)(1) = 1, and the Apéry limit (8)
takes the form

lim
n→∞

B(s)(n)

A(s)(n)
=

1

s(s+ 1)

s

6
π2 =

ζ(2)

s+ 1
, (10)

which matches [CS21, Conjecture 9] (we note that this conjecture further claims that
the sequence B(s)(n) is the unique solution of the minimal-order recurrence satisfied
by A(s)(n) with the above properties). The cases s = 3 and s = 4 of (10) had been
numerically observed by Tom Cusick [Poo79, p. 202], while the case s = 5 appears
as a conjecture in [AvSZ08, Section 4.1]. The case s = 3 was previously proved by
Zagier [Zag09] using modular forms.

Remark 1.6. Dougherty-Bliss and Zeilberger [DBZ21] explore Apéry limits related
to those of Example 1.5 in a different direction. They construct a particular sequence
B̃(s)(n) ∈ Q such that (10) holds with B(s)(n) replaced by B̃(s)(n). For fixed s,
the sequence B̃(s)(n) is D-finite, which implies that A(s)(n) and B̃(s)(n) satisfy a
common linear recurrence (namely, the recurrence obtained from the least common
left multiple of the two individual recurrence operators), but that recurrence is not
minimal unless B̃(s)(n) happens to solve the minimal recurrence satisfied by A(s)(n)
(that this is not the case is readily checked for small s). We note that one also
obtains the limits (10) for the alternative choice B̃(s)(n) = A(s)(n)b(n)/(s+ 1) where
b(n) is any holonomic sequence such that b(n) → ζ(2) as n → ∞. For instance,

one could choose b(n) =
∑n

k=1
1
k2

or b(n) = 3
∑n

k=1
1
k2

(
2k
k

)−1
, where the latter is

due to Apéry [Apé79, Poo79] and converges at an exponential rate. On the other
hand, Dougherty-Bliss and Zeilberger [DBZ21] hope that their construction has the
potential for better irrationality measures.
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Example 1.7. Likewise, for the case j = 2 of Theorem 1.3, we have A
(s)
2 (1) =

s(s+ 1)(s+ 2)(s+ 3)/12. If we let C(s)(n) = A
(s)
2 (n)/A

(s)
2 (1), then the initial values

are normalised to C(s)(0) = 0 and C(s)(1) = 1, and the Apéry limit (8) takes the
form

lim
n→∞

C(s)(n)

A(s)(n)
=

12

s(s+ 1)(s+ 2)(s+ 3)

s(5s+ 2)

360
π4 =

3(5s+ 2)

(s+ 1)(s+ 2)(s+ 3)
ζ(4),

which matches [CS21, Conjecture 11].

2 Solutions of the telescoping recurrence

We refer to [PWZ96, Kou09, Chy14] for general introductions to creative telescoping.
For our purposes, suppose that we are interested in a sequence

A(n) =

β−1∑
k=α

a(n, k).

If a(n, k) is an appropriate hypergeometric term, then creative telescoping algorith-
mically determines operators P (n,N) as well as another hypergeometric term b(n, k),
such that

P (n,N)a(n, k) = b(n, k + 1)− b(n, k). (11)

Moreover, the term b(n, k) as produced by creative telescoping is of the form b(n, k) =
R(n, k)a(n, k) for some rational function R(n, k). When the hypergeometric term
a(n, k) is defined over the ring Z (and this is specifically the case of our inter-
est here, though the argument below extends to other rings), that is, when both
a(n+ 1, k)/a(n, k) and a(n, k+ 1)/a(n, k) are quotients of polynomials from Z[n, k],
we can take P (n,N) ∈ Z[n,N ] and we have b(n, k) defined over Z. We note that,
given P (n,N) and R(n, k), an identity like (11) can be verified by dividing both sides
by a(n, k), upon which one obtains an identity between rational functions. For that
reason, R(n, k) is refered to as the certificate of the telescoping relation (11).

It follows from the telescoping nature of (11) that, after summing over k,

P (n,N)

β−1∑
k=α

a(n, k) = b(n, β)− b(n, α), (12)

assuming that b(n, k) is finite for the involved values of n and k.
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For our present purposes, a(n, k) =
(
n
k

)s
. We say that P (n,N) is a telescoping

recurrence operator for the generalized Franel numbers A(s)(n) if

P (n,N)

(
n

k

)s
= b(n, k + 1)− b(n, k), (13)

where b(n, k)/a(n, k) = R(n, k) is a rational function. We next show that it follows
from (13) not only that P (n,N)A(s)(n) = 0 but that the same recurrence is also
solved by A(s)(n, t), as defined in (6), up to terms of order ts or higher. Equivalently,

the sequences A
(s)
j (n) ∈ Q, as in (7), are solutions for j ∈ {0, 1, . . . , b(s− 1)/2c}.

Theorem 2.1. For fixed s, suppose that P (n,N) is a telescoping recurrence operator
for the generalized Franel numbers A(s)(n). Then, for large enough n, as t→ 0,

P (n,N)A(s)(n, t) = O(ts). (14)

Proof. Using the reflection formula

Γ(t)Γ(1− t) =
π

sin(πt)
,

we find that, for n ∈ Z≥0,(
n

−t

)
=

Γ(n+ 1)

Γ(n+ t+ 1)Γ(1− t)
=

sin(πt)

π

Γ(n+ 1)Γ(t)

Γ(n+ t+ 1)

=
sin(πt)

π

n!

t(t+ 1) · · · (t+ n)
. (15)

Consequently, for k ∈ Z such that 0 ≤ k ≤ n,(
n

k − t

)
=

sin(πt)

πt

(−1)kn!

(t− k) · · · (t− 1)(t+ 1) · · · (t+ n− k)

=
sin(πt)

πt

(
n

k

)[ k∏
j=1

(
1− t

j

) n−k∏
j=1

(
1 +

t

j

)]−1
, (16)

where we used sin(π(t− k)) = (−1)k sin(πt). If α and β are integers such that α ≤ 0
and β > n, we therefore have

A(s)(n, t) =

(
πt

sin(πt)

)s n∑
k=0

(
n

k − t

)s
=

(
πt

sin(πt)

)s β−1∑
k=α

(
n

k − t

)s
+O(ts),
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where the first equality is a consequence of (16), while the second follows from the
added binomial coefficients being O(t) as t→ 0. The claim (14) therefore follows if
we can show that

P (n,N)

β−1∑
k=α

(
n

k − t

)s
= O(ts)

for large enough n.
Since (13) after dividing by

(
n
k

)s
is a rational-function identity in n and k, the

relation (13) continues to hold if we replace k by k − t, for an indeterminate t,
resulting in

P (n,N)

(
n

k − t

)s
= b(n, k + 1− t)− b(n, k − t). (17)

Because b(n, t)/a(n, t) = R(n, t) is a rational function, while a(n, t) is an entire
function in t for each n ≥ 0, we conclude that, for each large enough n (so that the
denominator of R(n, t) cannot vanish for all t), b(n, t) can have at most finitely many
poles as a function of t. However, for fixed such n, the function b(n, t + 1)− b(n, t)
is entire in t (since the the left-hand side in (17) is a linear combination of entire
functions), hence b(n, t) cannot have poles at all. In particular, for large enough n,
b(n, t) is itself an entire function in t, and we can then sum (17) over k to obtain

P (n,N)

β−1∑
k=α

(
n

k − t

)s
= b(n, β − t)− b(n, α− t). (18)

It therefore remains to show that b(n, α− t) and b(n, β − t) are each O(ts) as t→ 0
for some integral α ≤ 0 and β > n of our choosing. To that end, fix n and note that,
if α ≤ 0 is an integer, then

b(n, α− t) = R(n, α− t)
(

n

α− t

)s
is O(ts) as t→ 0, because the binomial coefficient(

n

α− t

)
=

(−1)α+1(
n−α
n

) t+O(t2)

is O(t), provided that the rational function r(t) := R(n, t) (which is well-defined for
large enough n) does not have a pole at t = α. This is necessarily the case for α ≤ 0
of large enough absolute value because r(t) can have at most finitely many poles.
The same argument applies to show that b(n, β− t) is O(ts) for large enough integral
β > n.
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Remark 2.2. The proof above shows that Theorem 2.1 is true for all n ∈ Z≥0 if
the denominator of the rational certificate R(n, k) has no factor of the form n − n0

for some n0 ∈ Z≥0 (so that b(n, t) is an entire function in t for all n ∈ Z≥0). The
computations mentioned in Remark 4.1 below show that, for s ≤ 20, the minimal
recurrence is telescoping and that, up to a constant multiple, the denominator of
R(n, k) is (n − k + 1)sm. It is natural to expect that these observations continue to
be true for all s.

Remark 2.3. With (16) in mind, we note that the rational function

n!

t(t+ 1) · · · (t+ n)
=

n∑
k=0

(−1)k
(
n
k

)
t+ k

=
π

sin(πt)

(
n

−t

)
,

and its powers play a role of building bricks in constructions of Q-linear forms in
zeta values [Nes03, Zud04].

3 Proof of the Apéry limits

This section is devoted to a proof of the following result which, together with The-
orem 2.1, establishes the Apéry limits associated to the generalized Franel numbers
A(s)(n) as claimed in Theorem 1.3.

Theorem 3.1. For any s ∈ Z>0, we have

lim
n→∞

A(s)(n, t)

A(s)(n)
=

(
πt

sin(πt)

)s
, (19)

where the convergence is locally uniform in t (restricted to the unit ball |t| < 1).

That is, we wish to show that

lim
n→∞

∑n
k=0

(
n
k

)s [∏k
j=1

(
1− t

j

)∏n−k
j=1

(
1 + t

j

)]−s
∑n

k=0

(
n
k

)s =

(
πt

sin(πt)

)s
, (20)

and that the convergence is locally uniform in t.
The asymptotics for sums of powers of binomials are known to be, for fixed s,

n∑
k=0

(
n

k

)s
=

2ns√
s(πn/2)s−1

(
1 +O

(
1

n

))
. (21)
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For instance, a more precise estimate with additional terms (and which applies to
more general binomial sums) is derived by McIntosh [McI96]. Slightly weaker es-
timates are derived in [GKP94, p. 486–489], with full details provided in the case
s = 1, as well as in [FL05]. In each case, the analysis rests on the fact that the bi-
nomial sum is dominated by those terms with k ≈ n/2. However, the precise choice
of cut-off for the dominant part of the sum differs between the various approaches.
In [McI96] the dominant terms are those corresponding to k satisfying

∣∣k − n
2

∣∣ ≤ εn

for suitable ε > 0, while in [GKP94] this condition is replaced with
∣∣k − n

2

∣∣ ≤ εn1/2.
On the other hand, in [GKP94], one restricts to those k in the set

Kn,ε =
{
k ∈ Z :

∣∣∣k − n

2

∣∣∣ ≤ n1/2+ε
}
.

It is this latter choice that is most suitable for our present purposes.
Naturally, our strategy to establish the limit (20) is to exploit the fact that the

sums on the left-hand side are concentrated around k ≈ n/2. For those k and large
n, we have

k∏
j=1

(
1− t

j

) n−k∏
j=1

(
1 +

t

j

)
≈
∞∏
j=1

(
1− t

j

)(
1 +

t

j

)
=

sin(πt)

πt
.

On the other hand, this is not true if k is not sufficiently close to n/2; however,
we will show that the contribution from these k is overall negligible. To make this
precise, we begin by observing the following desired behaviour for k ∈ Kn,ε.

Lemma 3.2. Fix ε ∈ [0, 1/2) and τ > 0. Then, for all integers n ≥ 0, all k ∈ Kn,ε

and all |t| ≤ τ , we have

k∏
j=1

(
1− t

j

) n−k∏
j=1

(
1 +

t

j

)
=

sin(πt)

πt

(
1 +O

(
1

n1/2−ε

))
where the implied constant depends on ε and τ (but not on t or k).

Proof. To begin with, note that

n∏
j=1

(
1 +

t

j

)
=

(n+ t)!

n!t!
.

In light of the classical

1

Γ(1 + t)Γ(1− t)
=

sin(πt)

πt
,
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we therefore need to show that

(k − t)!
k!

(n− k + t)!

(n− k)!
= 1 +O

(
1

n1/2−ε

)
. (22)

To this end, recall Stirling’s formula in its logarithmic form, namely,

ln(n!) = n ln(n)− n+
ln(n)

2
+

1

2
ln(2π) +O

(
1

n

)
. (23)

With the assumption that t = O(1), we deduce from (23) that

(n+ t)!

n!
= nt

(
1 +O

(
1

n

))
(24)

and, therefore,

(k − t)!
k!

(n− k + t)!

(n− k)!
=
(n
k
− 1
)t(

1 +O

(
1

k

)
+O

(
1

n− k

))
.

The assumption k ∈ Kn,ε implies that k = n
2

+O(n1/2+ε) and, in particular,

n

k
− 1 =

n
n
2

+O(n1/2+ε)
− 1 = 1 +O

(
1

n1/2−ε

)
,

leading us to the claimed relation (22).

On the other hand, for k /∈ Kn,ε, the products can be bounded using the following
simple observation.

Lemma 3.3. Fix τ ∈ (0, 1). For all integers n > 0 and all |t| ≤ τ , we have∣∣∣∣∣
n∏
j=1

(
1 +

t

j

)∣∣∣∣∣
−1

= O(nτ )

where the implied constant depends on τ (but not on t).

Proof. Because |t| ≤ τ < 1, we have∣∣∣∣∣
n∏
j=1

(
1 +

t

j

)∣∣∣∣∣
−1

≤
n∏
j=1

(
1− τ

j

)−1
and it can be deduced from (24) that

n∏
j=1

(
1− τ

j

)−1
= Γ(1− τ)nτ

(
1 +O

(
1

n

))
.
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In particular, for 0 < k ≤ n and |t| ≤ τ < 1, we conclude from Lemma 3.3 the
crude bound [

k∏
j=1

(
1− t

j

) n−k∏
j=1

(
1 +

t

j

)]−s
= O(n2s), (25)

which could be easily strenghtened but which suffices for our purposes.
We now write

as,t(k, n) =

(
n

k

)s [ k∏
j=1

(
1− t

j

) n−k∏
j=1

(
1 +

t

j

)]−s
and follow the approach in [GKP94, p. 486–489] to prove the following.

Lemma 3.4. Fix s > 0, τ ∈ (0, 1) and ε ∈ (0, 1/6). Then, for all integers n ≥ 0
and all k ∈ Kn,ε and all t such that |t| ≤ τ , we have

n∑
k=0

as,t(k, n) =
2ns√

s(πn/2)s−1

[
πt

sin(πt)

]s(
1 +O

(
1

n1/2−3ε

))
(26)

where the implied constant depends on s, ε and τ (but not on t).

Proof. Proceeding as in [GKP94], we obtain that, for k ∈ Kn,ε,(
n

k

)s
=

[
2n+1

√
2πn

e−2(k−n/2)
2/n

]s(
1 +O

(
1

n1/2−3ε

))
. (27)

Combined with Lemma 3.2, we find

as,t(k, n) =

[
2n+1

√
2πn

e−2(k−n/2)
2/n πt

sin(πt)

]s(
1 +O

(
1

n1/2−3ε

))
.

In other words, we have, for k ∈ Kn,ε,

as,t(k, n) = bs,t(k, n) +O(cs,t(k, n)),

where

bs,t(k, n) =

[
2n+1

√
2πn

e−2(k−n/2)
2/n πt

sin(πt)

]s
and (because πt/ sin(πt) = O(1))

cs,t(k, n) = 2nse−2s(k−n/2)
2/n 1

n(s+1)/2−3ε .

12



We now apply the tail-exchange method and estimate

∑
k

as,t(k, n) =
∑
k

bs,t(k, n) +O

 ∑
k/∈Kn,ε

|as,t(k, n)|

+O

 ∑
k/∈Kn,ε

|bs,t(k, n)|


+O

 ∑
k∈Kn,ε

|cs,t(k, n)|

 . (28)

The idea, of course, being that the first term on the right-hand side of (28), namely∑
k

bs,t(k, n) =

[
2n+1

√
2πn

πt

sin(πt)

]s∑
k

e−2s(k−n/2)
2/n

=

[
2n+1

√
2πn

πt

sin(πt)

]s√
πn

2s

(
1 +O

(
e−

nπ2

2s

))
=

2ns√
s(πn/2)s−1

[
πt

sin(πt)

]s (
1 +O

(
e−

nπ2

2s

))
, (29)

provides the asymptotics for the left-hand side of (28) while the other terms are
negligible in comparison. Indeed,∑

k∈Kn,ε

|cs,t(k, n)| ≤
∑
k

cs,t(k, n) =
2ns

n(s+1)/2−3ε

∑
k

e−2s(k−n/2)
2/n

is asymptotically smaller than (29) provided that 3ε < 1
2

(note that adding this
contribution to (29) requires adjusting the error term in (29) to the one claimed in
(26)). Likewise,∑

k/∈Kn,ε

|bs,t(k, n)| =
∣∣∣∣ 2n+1

√
2πn

πt

sin(πt)

∣∣∣∣s ∑
k/∈Kn,ε

e−2s(k−n/2)
2/n

is asymptotically smaller than (29) because the right-hand side sum is O(n−M) for
all M (here, we use that ε > 0). Thirdly, by (25),∑

k/∈Kn,ε

|as,t(k, n)| = O(n2s)
∑
k/∈Kn,ε

(
n

k

)s
and the right-hand side sum is bounded by n times its largest term, which is bounded
by the one corresponding to k∗ =

⌊
n
2

+ n1/2+ε
⌋
∈ Kn,ε. In particular, applying (27)

13



to that term, reveals that∑
k/∈Kn,ε

|as,t(k, n)| =
(
n

k∗

)s
O(n2s+1) =

[
2n+1

√
2πn

e−2(k
∗−n/2)2/n

]s
O(n2s+1)

is asymptotically smaller than (29) as well.

Combining (21) and (26), we conclude the desired limit (20), including the re-
quired uniform convergence.

4 Lower bounds for telescoping recurrences

We are now in a position to apply the results on Apéry limits to prove Theorem 1.1.
That is, we wish to conclude that any telescoping recurrence satisfied by A(s)(n) has
order at least b(s+ 1)/2c.

Proof of Theorem 1.1. By Theorem 1.3, any telescoping recurrence satisfied byA(s)(n)

is also solved, for large enough n, by the b(s + 1)/2c sequences A
(s)
j (n) ∈ Q defined

in (7), where j ∈ {0, 1, . . . , b(s − 1)/2c}. We recall from [PWZ96, Theorem 8.2.1]
that a recurrence with polynomial coefficients has order r if and only if the space of
its solutions, upon identifying sequences that eventually agree, has dimension r.

Therefore, to conclude that any telescoping recurrence satisfied by A(s)(n) has

order at least r = b(s + 1)/2c, it suffices to show that the r solutions A
(s)
j (n), j ∈

{0, 1, . . . , r−1}, upon this identification, are linearly independent. As these solutions
are rational-valued, assuming their linear dependence, there must necessarily exist a
dependence relation over Q. This means that

0 =
r−1∑
j=0

λjA
(s)
j (n), λj ∈ Q, (30)

for large enough n. Now, upon dividing (30) by A(s)(n) and taking the limit as
n→∞, we find out that

0 = lim
n→∞

r−1∑
j=0

λj
A

(s)
j (n)

A(s)(n)
=

r−1∑
j=0

λjϕjπ
2j,

where the latter equality uses the Apéry limits established in Theorem 1.3. Since
λjϕj ∈ Q, the transcendence of π implies that λjϕj = 0 for all j ∈ {0, 1, . . . , r − 1}.
We know that ϕj 6= 0, so we must have λj = 0 for all j ∈ {0, 1, . . . , r − 1}, proving

the desired linear independence of the r solutions A
(s)
j (n).

14



Remark 4.1. The computations of Perlstadt [Per87] and McIntosh [McI89] show
that a telescoping recurrence equation of (the conjectured to be minimal) order
m = b(s + 1)/2c exists for s ≤ 10. We have extended these computations to all
s ≤ 20 using Koutschan’s implementation [Kou09] HolonomicFunctions in Mathe-
matica and, in each case, obtained a recurrence of orderm (the minimality of these re-
currence operators was then confirmed using the function MinimalRecurrence from
the LREtools Maple package).

These computations suggest that a minimal-order recurrence of A(s)(n) can al-
ways be obtained via creative telescoping. Moreover, Alin Bostan observes that this
minimal recurrence of order m has polynomial coefficients of degree

d =

{
1
3
m(m2 − 1) + 1, for even s,

1
3
m3 − 1

2
m2 + 2

3
m+ (−1)m−1

4
, for odd s.

In particular, the degree appears to grow like s3/24 (rather than being bounded by
s− 1 as Franel incorrectly predicted in [Fra95]). As for the rational certificate, when
written in lowest terms and with integer coefficients, we further find out that its
denominator is given by

(n− k + 1)sm =
m∏
j=1

(n− k + j)s

and, thus, has degree ms in each of n and k. The corresponding numerator has
degree ms+δ2(s) in the variable k (as used in Remark 2.2), where the delta notation
is for δr(s) = 0 unless r divides s in which case δr(s) = 1. At the same time, its
degree in n is d+ s(s− 1− δ2(s))/2− δ6(s). Moreover, the numerator is

ks
∏
j≥1

(n+ j)max(0,s+2−4j−(−1)s)

times a (large) irreducible factor. These observations hold true for s ≤ 20, and it is
natural to expect that the patterns persist for larger s as well.

If desired, the above computations can readily be extended to larger s. Readers
interested in computing telescoping recurrence equations for large s might find value
in considering a guess-and-prove approach (with the above observations taken into
account) such as described, for instance, in [Pil19] for a different hypergeometric
sum.
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5 Conclusions

We have explicitly determined the Apéry limits associated to the generalized Franel
numbers, resolving the explicit conjectures in [CS21]. As a novel application of Apéry
limits, we proved in Theorem 1.1 that Franel’s conjecture is true if the minimal-
order recurrence satisfied by A(s)(n) is a telescoping recurrence equation. It would
be useful to establish general conditions under which it can be guaranteed that
creative telescoping is able to determine a recurrence of minimal order. As a rare
result of this type, we mention that Schneider [Sch10, Corollary 7.4] proves that
creative telescoping finds a minimal (inhomogeneous) recurrence for certain sums
over hypergeometric terms a(n, k) where the summation bounds are independent of
n but finite. On the other hand, we refer to Paule [Pau21, Section 11.2] for an example
in which creative telescoping is not able to find a recurrence of minimal order. We
echo Chyzak’s [Chy14, p. 52] comment that “a theoretical explanation is still missing
and would be welcome in order to design algorithms for minimal-order annihilators.”
From a different point of view, it is not necessarily that creative telescoping suffers
from missing a minimal-order recurrence for a given D-finite sequence A(n) but that
the sequence itself always possesses multiple hypergeometric representations, also as
multiple binomial sums, and that we a priori have no knowledge on which of those
the algorithm will produce the optimal outcome.

As mentioned in the introduction, Stoll [Sto97], as well as Cusick [Cus89], con-
struct recurrences for the generalized Franel numbers (of the conjectured order). It
would be of interest to see if these constructions can be augmented to show that they
actually result in telescoping recurrences.

As noted in the introduction (see also Remark 1.2 there), there is a shortage of
general results that make it possible to prove lower bounds on the order of recurrences
satisfied by D-finite sequences. We expect that the present approach can be applied
to other families of binomial sums to compute the corresponding Apéry limits and
to prove lower bounds for their minimal telescoping recurrences.
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Bounds, Complexity. Habilitation à diriger des recherches (HDR), Uni-
versity Paris-Sud 11, April 2014.

[Cus89] Thomas W Cusick. Recurrences for sums of powers of binomial coeffi-
cients. J. Comb. Theory Ser. A, 52(1):77–83, 1989.

[DBZ21] Robert Dougherty-Bliss and Doron Zeilberger. Experimenting with
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