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Abstract

Convergent infinite products, indexed by all natural numbers, in which each
factor is a rational function of the index, can always be evaluated in terms
of finite products of gamma functions. This goes back to Euler. A purpose
of this note is to demonstrate the usefulness of this fact through a number of
diverse applications involving multiplicative partitions, entries in Ramanujan’s
notebooks, the Chowla–Selberg formula, and the Thue–Morse sequence. In
addition, we propose a numerical method for efficiently evaluating more general
infinite series such as the slowly convergent Kepler–Bouwkamp constant.
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1. Introduction

Recall that an infinite product
∏∞
k=1 a(k) is said to converge if the sequence

of its partial products converges to a nonzero limit. In this note we are especially
interested in the case when a(k) is a rational function of k. Assuming that the
infinite product converges, a(k) is then necessarily of the form

a(k) =
(k + α1) · · · (k + αn)

(k + β1) · · · (k + βn)
(1)

with α1, . . . , αn and β1, . . . , βn complex numbers, none of which are negative
integers, such that α1 + . . . + αn = β1 + . . . + βn. To see that this is the case,
note first that clearly a(k) → 1 as k → ∞ so that a(k) can be factored into
linear terms as on the right-hand side of (1). On the other hand, if a(k) =
1 + ck−1 + O(k−2) as k → ∞ then convergence of the infinite product (and
divergence of the harmonic series) forces c = α1 + . . .+ αn − β1 − . . .− βn = 0.

These infinite products always have a finite-term evaluation in terms of Eu-
ler’s gamma function [30, Sec. 12.13].

1 July 29, 2013



Theorem 1.1. Let n > 1 be an integer, and let α1, . . . , αn and β1, . . . , βn be
nonzero complex numbers, none of which are negative integers. If α1+. . .+αn =
β1 + . . .+ βn, then∏

k>0

(k + α1) · · · (k + αn)

(k + β1) · · · (k + βn)
=

Γ(β1) · · ·Γ(βn)

Γ(α1) · · ·Γ(αn)
. (2)

Otherwise, the infinite product in (2) diverges.

This result is a simple consequence of Euler’s infinite product definition (3)
of the gamma function, see the beginning of Section 2. It is, however, scarcely
stated explicitly in the literature. For instance, while the table [14] contains
several pages of special cases of (2), some of which are rather generic in nature,
it does not list (2) or an equivalent version thereof. An incidental objective of
this note is therefore to advertise (2) and to illustrate its usefulness during the
course of the applications given herein.

This note was motivated by a result, discussed in Section 3, which recently
appeared in [8] as part of a study of multiplicative partitions. In Section 3 we
also apply Theorem 1.1 to two entries in Ramanujan’s (lost) notebook [3].

The first novel contribution of this note may be found in Section 4, where
we propose an approach to the numerical evaluation of certain general, not
necessarily rational, infinite products, which is based upon Theorem 1.1 and
Padé approximation. We illustrate this approach by applying it to the Kepler–
Bouwkamp constant, defined as the infinite product

∏∞
k=3 cos (π/k). Due to

its infamously slow convergence, various procedures for its numerical evaluation
have been discussed in the literature [7], [13], [28]. The present approach has
the advantage that it does not rely on developing alternative, more rapidly
convergent, expressions for the Kepler–Bouwkamp constant.

In Section 5 we discuss properties of short gamma quotients at rational
arguments. In particular, we offer an alternative proof of a result established
in [24] and [17]. In the light of our proof, this result may be interpreted as
a (much simpler) version of the Chowla–Selberg formula [25] in the case of
principal characters.

Finally, in Section 6, consideration of an infinite product defined in terms of
the Thue–Morse sequence naturally leads us to a curious open problem posed
by Shallit.

2. Proof and basic examples

We commence with supplying a proof of Theorem 1.1 and giving a number
of basic examples.

Proof of Theorem 1.1. Euler’s definition gives the gamma function as

Γ(z) = lim
m→∞

mzm!

z(z + 1) · · · (z +m)
, (3)
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which is valid for all z ∈ C except for negative integers z. Thus,

n∏
j=1

Γ (βj)

Γ (αj)
= lim

m→∞

n∏
j=1

mβj−αj

m∏
k=0

αj + k

βj + k

= lim
m→∞

m∏
k=0

n∏
j=1

αj + k

βj + k
,

where, for the second equality, we make use of the fact that the sum of the αj
is the same as the sum of the βj .

In a similarly straight-forward manner, see [30, Sec. 12.13], an alternative
proof of Theorem 1.1 follows from the Weierstrassian infinite product

1

Γ (1 + z)
= eγz

∏
k>1

(
1 +

z

k

)
e−z/k.

Example 2.1. In the case α1 = z, α2 = −z, β1 = β2 = 0, Theorem 1.1 yields
the famous ∏

k>1

(
1− z2

k2

)
=

1

Γ (1− z) Γ (1 + z)
=

sin (πz)

πz
. (4)

Similarly, one finds, for non-integral z, the slightly less well-known

∏
k>1

(k − z) (k + z − 1)

(k − 1/2)
2 =

Γ (1/2)
2

Γ (1− z) Γ (z)
= sin (πz) .

Both representations clearly reflect the reflection formula,

Γ(z)Γ(1− z) =
π

sin(πz)
, (5)

for the gamma function.

Example 2.2. Theorem 1.1 also gives an immediate proof of Wallis’ product

2 · 2
1 · 3

· 4 · 4
3 · 5

· 6 · 6
5 · 7

· · · =
∏
k>0

(2k + 2)(2k + 2)

(2k + 1)(2k + 3)
=

Γ(1/2)Γ(3/2)

Γ(1)Γ(1)
=
π

2
.

Alternatively, this evaluation can be seen as a corollary to (4). Several gener-
alizations of Wallis’ product, similarly based on Theorem 1.1, are discussed in
the recent [27] and [4].

Example 2.3. As another illustration of Theorem 1.1, we evaluate

∏
k>1

(
1− (−1)k

(2k + 1)3

)
.
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This is Entry 89.6.12 in [14] where it is incorrectly listed with value π3/32, but
is corrected in an erratum. Let ρ = (3 + i

√
3)/8. The correct, though more

involved, value is∏
k>1

(
1− (−1)k

(2k + 1)3

)
=

∏
k>1

(
1− 1

(4k + 1)3

)∏
k>1

(
1 +

1

(4k − 1)3

)

=
∏
k>1

k(k + ρ)(k + ρ̄)

(k + 1/4)3

∏
k>1

k(k − ρ)(k − ρ̄)

(k − 1/4)3

=
Γ(1 + 1/4)3

Γ(1 + ρ)Γ(1 + ρ̄)

Γ(1− 1/4)3

Γ(1− ρ)Γ(1− ρ̄)

=

(
π/4

sin(π/4)

)3
sin(πρ)

πρ

sin(πρ̄)

πρ̄

=
π

12

[
1 +
√

2 cosh

(√
3

4
π

)]

For the last equality we used that | sin(x+ iy)|2 = (cosh(2y)− cos(2x))/2.

Example 2.4. This example briefly indicates that Theorem 1.1 also applies to
infinite products with individual terms removed, for instance, for convergence.
Let ξn = e2πi/n and z 6∈ {0, 1, 2, . . .}. The evaluation

∏
k>0

kn − zn

kn + zn
=

2n∏
j=1

Γ(zξj2n)(−1)j+1

follows from Theorem 1.1 as well. Let m be a nonnegative integer. Since the
residue of the gamma function Γ(z) at z = −m is (−1)m/m!, we have, as z → m,

(mn − zn)Γ(−z)→ (−1)m

m!
nmn−1,

and hence

∏
k>0,k 6=m

kn −mn

kn +mn
= (−1)mm!

2m

n

2n−1∏
j=1

Γ(−mξj2n)(−1)j+1

.

This example is discussed in much more detail in [5, Section 1.2], where it is
also noted that the gamma functions can be replaced by trigonometric functions
when n is even.

3. Further applications

3.1. Multiplicative partitions

The original motivation for this note was the following result, which recently
appeared in [8] as part of a study of multiplicative partitions.
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Theorem 3.1. ([8, Theorem 4.2]) For integers n > 2,

∏
k>2

1

1− k−n
=

n−1∏
j=1

Γ
(
2− ξjn

)
= n

n−1∏
j=1

Γ
(
1− ξjn

)
where ξn = e2πi/n.

Proof. Apply Theorem 1.1 to the rational function (k+2)n

(k+2)n−1 to obtain the first

equality. For the second part, recall that Γ(x+ 1) = xΓ(x).

To put Theorem 3.1 into context, let an denote the number of multiplicative
partitions of the natural number n. For instance, a18 = 4 because 18 = 2 · 9 =
2 · 3 · 3 = 3 · 6. In analogy with Euler’s infinite product formula for the zeta
function, the Dirichlet generating series for the an is the product

∞∑
n=1

an
ns

=
∏
k>2

(1 + k−s + k−2s + . . .) =
∏
k>2

1

1− k−s
.

The values in Theorem 3.1 are values of this Dirichlet series at positive integers
and, as such, analogous to the zeta values ζ(n).

3.2. A product considered by Ramanujan

In [22], see also [3, Chapter 16], Ramanujan considers the product

φ(α, β) =

∞∏
n=1

{
1 +

(
α+ β

n+ α

)3
}
, (6)

and shows that φ(α, β) can be expressed in “finite terms” when the difference
α− β is an integer. If one includes values of the gamma function in the notion
of finite term, then the product (6) can always be evaluated in finite terms.
Indeed, using the factorization

1 +

(
α+ β

n+ α

)3

=
(n+ 2α+ β)

(
n+ α−β+(α+β)

√
−3

2

)(
n+ α−β−(α+β)

√
−3

2

)
(n+ α)3

,

we have, by Theorem 1.1,

φ(α, β) =
Γ (1 + α)

3

Γ(1 + 2α+ β)Γ
(

1 + α−β+i(α+β)
√

3
2

)
Γ
(

1 + α−β−i(α+β)
√

3
2

) . (7)

We observe that, if α− β is an integer, then the product

Γ

(
1 +

α− β + i(α+ β)
√

3

2

)
Γ

(
1 +

α− β − i(α+ β)
√

3

2

)
can be simplified using the reflection formula (5). As noted by Ramanujan, one
arrives at an evaluation of φ(α, β) in terms of hyperbolic functions only.
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Example 3.2. In the case α = β, we have from (7)

φ(α, α) =
Γ(1 + α)3

Γ(1 + 3α)Γ
(
1 + iα

√
3
)

Γ
(
1− iα

√
3
)

=
Γ(1 + α)3

Γ(1 + 3α)

sinh(πα
√

3)

πα
√

3
, (8)

as in [22, equation (6)] and [3, equation (16.3.1)].

3.3. Another product considered by Ramanujan
In the next example we employ Theorem 1.1 to rewrite an integral, consid-

ered by Ramanujan in his lost notebook [3]. By doing so, we obtain a Mellin–
Barnes integral which provides further context for the integral evaluation and
leads to natural generalizations.

In [3, Entry 4.9.1] the following integral due to Ramanujan is recorded:∫ ∞
0

(
1 + x2/b2

1 + x2/a2

)(
1 + x2/(b+ 1)2

1 + x2/(a+ 1)2

)(
1 + x2/(b+ 2)2

1 + x2/(a+ 2)2

)
· · · dx

=

√
π

2

Γ(a+ 1/2)Γ(b)Γ(b− a− 1/2)

Γ(a)Γ(b− 1/2)Γ(b− a)
, (9)

where 0 < a < b− 1
2 . Using the factorization

1 + x2/(b+ k)2

1 + x2/(a+ k)2
=

(k + a)2(k + b+ ix)(k + b− ix)

(k + b)2(k + a+ ix)(k + a− ix)
,

as well as Theorem 1.1, the integrand can be rewritten as

∞∏
k=0

1 + x2/(b+ k)2

1 + x2/(a+ k)2
=

Γ(b)2Γ(a+ ix)Γ(a− ix)

Γ(a)2Γ(b+ ix)Γ(b− ix)
.

Equation 9 is therefore equivalent to the Mellin–Barnes integral

1

2πi

∫ i∞

−i∞

Γ(a+ s)Γ(a− s)
Γ(b+ s)Γ(b− s)

ds =
1

2
√
π

Γ(a)

Γ(b)

Γ(a+ 1/2)Γ(b− a− 1/2)

Γ(b− 1/2)Γ(b− a)
. (10)

We note that, using the duplication formula

Γ(2z) =
22z−1

√
π

Γ(z)Γ
(
z + 1

2

)
, (11)

the right-hand side of (10) can be simplified to yield

1

2πi

∫ i∞

−i∞

Γ(a+ s)Γ(a− s)
Γ(b+ s)Γ(b− s)

ds =
Γ(2a)Γ(2b− 2a− 1)

Γ(b− a)2Γ(2b− 1)
.

In this final, somewhat more canonical, form it is straight-forward to find natural
generalizations in the literature, such as

1

2πi

∫ i∞

−i∞

Γ(a+ s)Γ(c− s)
Γ(b+ s)Γ(d− s)

ds =
Γ(a+ c)Γ(b+ d− a− c− 1)

Γ(b− a)Γ(d− c)Γ(b+ d− 1)
,

which is proved in [21] using Parseval’s formula.
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4. Numerical applications

4.1. Numerical evaluations of products

In this section, we consider general infinite products
∏∞
k=1 a(k), where a(k)

is not necessarily a rational function. The goal is to present a simple yet efficient
way to obtain accurate numerical evaluations of such infinite products for certain
a(k), even when the original product converges very slowly. The approach is
based on approximating a(k) by a rational function and using Theorem 1.1 to
express the result as a finite product of gamma functions.

We illustrate this approach for the Kepler–Bouwkamp constant [11, Sec. 6.3]

∞∏
k=3

cos
(π
k

)
= 0.1149420448532962 . . . (12)

This constant is motivated by a geometric construction. Start with a circle
of unit radius and inscribe an equilateral triangle, inscribe the triangle with
another circle which is then inscribed with a square, inscribe the square with
yet another circle which is inscribed with a regular pentagon, and so on as in
Figure 1. The radii of the inscribing circles then approach a limit which is the
Kepler–Bouwkamp constant (12). For further references and the history of this
constant, including various approaches to its numerical computation, we refer
to [7], [11, Sec. 6.3], [13] and [28].

The product (12), however, converges rather slowly. For instance, truncat-
ing the product after 104 terms only results in four correct digits. The usual
approach to computing the Kepler–Bouwkamp constant — taken, for instance,
in [7] and [28] — is to first develop more rapidly converging expressions for (12).
On the other hand, we will demonstrate how one can use (12) to evaluate the
Kepler–Bouwkamp constant in a completely automated way to, say, 100 digits
in a matter of a few seconds.

Figure 1: Kepler–Bouwkamp constant as ratio of inner circle and outer circle
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A natural choice for approximating a function f(x), such as cos(πx), by
a rational function is to use a Padé approximant [10, Chapter 4]. The Padé
approximant of order [m,n] is the rational function of numerator degree m and
denominator degree n, whose Maclaurin series agrees with the one of f(x) to
order m+n (the highest possible order). For our purposes we are interested only
in Padé approximants of order [n, n]. For instance, the [2, 2] Padé approximant
of cos(x) is

r2(x) =
12− 5x2

12 + x2
= cos(x) +O(x6).

We can now approximate the product (12) by the corresponding product of
rational functions, which, using Theorem 1.1, evaluates to a finite product of
gamma functions:

∞∏
k=3

r2

(
π
k

)
=

∞∏
k=3

12k2 − 5π2

12k2 + π2
=

Γ
(
3− i

6

√
3π
)

Γ
(
3 + i

6

√
3π
)

Γ
(
3− 1

6

√
15π

)
Γ
(
3 + 1

6

√
15π

) ,
This approximation agrees with (12) to three decimal digits. More accurate
approximations can be obtained by using the Padé approximant only for k > N ,
thus approximating (12) with[
N−1∏
k=3

cos
(
π
k

)] [ ∞∏
k=N

r2

(
π
k

)]
=

[
N−1∏
k=3

cos
(
π
k

)] Γ
(
N − i

6

√
3π
)

Γ
(
N + i

6

√
3π
)

Γ
(
N − 1

6

√
15π

)
Γ
(
N + 1

6

√
15π

) .
For N = 10 this results in 6 correct digits, and 11 correct digits for N = 100. Of
course, more accurate approximations are obtained if the order n of the Padé
approximant is increased. Table 1 shows the number of correct decimal digits
that one obtains for various modest choices of n and N (instead of truncating
the entries of Table 1 to integers, we adopt the convention that two numbers
A and B agree to − log10 |A − B| decimal digits). None of the computations
took more than 5 seconds on a usual laptop using Mathematica 7 and without
optimizing the computation.

N 3 4 5 10 100 1000
n = 2 3.19 4.00 4.57 6.22 11.3 16.3
n = 4 6.87 8.22 9.21 12.1 21.3 30.3
n = 6 11.2 13.1 14.5 18.7 31.9 45.0
n = 8 16.1 18.5 20.3 25.7 43.0 60.1
n = 10 21.4 24.3 26.5 33.1 54.5 75.5
n = 12 27.0 30.4 33.0 40.8 66.2 91.3
n = 14 32.9 36.8 39.7 48.8 78.3 107.
n = 16 39.0 43.4 46.7 57.0 90.5 124.

Table 1: Number of correct digits for various approximations to (12)

We note that this method for approximating an infinite product
∏∞
k=1 a(k)

only relies on computing a Padé approximant for the factor a(k), numerically
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finding the zeros and poles of this rational function in order to apply Theorem
1.1, and numerically evaluating the resulting finite product of gamma functions.
All these operations are efficiently and easily available in any computer algebra
system. This makes the present approach a rather versatile tool in numerically
evaluating a number of slowly converging infinite products.

Remark 4.1. Because of their special relevance in number theory it is natural
to ask if the above numerical procedure can be applied to products indexed by
primes, such as Artin’s constant∏

p prime

(
1− 1

p (p− 1)

)
≈ 0.373956.

However, no immediate transfer appears available. Fortunately, a very efficient
method for numerically evaluating such products has been developed in [18]. We
cannot resist to remark that, for Artin’s constant, the corresponding product
over all integers is given by

∏
n>2

(
1− 1

n (n− 1)

)
= − 1

π
cos

(√
5

2
π

)
≈ 0.296675.

4.2. Numerical evaluations of sums

Note that series
∑∞
k=0 ak are related to products via the obvious

∞∑
k=0

ak = log

( ∞∏
k=0

exp(ak)

)
. (13)

The approach for numerically evaluating infinite products may thus also be
applied to certain series.

In case of the exponential function, explicit formulas exist [10, Example
4.2.2] for the Padé approximants of any order. In particular, letting

fn(x) =

n∑
j=0

(2n− j)!n!

(2n)!j!(n− j)!
xj =

n∑
j=0

(
n
j

)(
2n
j

) xj
j!
,

the [n, n] Padé approximation of exp(x) is given by

fn(x)

fn(−x)
.

In fact, as explained in the lovely article [9], these approximations to the expo-
nential function are already implicit in Hermite’s 1873 paper on the transcen-
dence of e, and thus predate the systematic study of Padé approximations by
Hermite’s eponymous student Padé in his 1892 thesis.
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For instance, in the case of the Riemann zeta function we obtain the approx-
imations

ζ(m) =

∞∑
k=1

1

km
≈ log

( ∞∏
k=1

fn(k−m)

fn(−k−m)

)
=: ζn(m) (14)

by replacing the exponential function by its [n, n] Padé approximation in (13).
Table 2 gives some indication on the quality of this approximation (again, we say
that two numbers A and B agree to − log10 |A−B| decimal digits). For instance,
ζ10(3) agrees with ζ(3) to 25 digits. Indeed, a few computations quickly suggest
that, for any integer m > 2, ζ10(m) agrees with ζ(m) to 25 decimal digits.
Analogously, the data of Table 2 (to the precision given) applies for any integer
m > 2. This observation is, to some degree, explained next.

n 2 3 4 5 6 7 8 9 10
m = 3 2.83 4.99 7.39 9.99 12.8 15.6 18.7 21.8 25.0

Table 2: Number of digits of ζn(3) that agree with ζ(3)

Clearly, we have ζ(m)→ 1 as m→∞. On the other hand, we see from (14)
that

lim
m→∞

ζn(m) = log

(
fn(1)

fn(−1)

)
.

For instance,

lim
m→∞

ζ3(m) = log

(
193

71

)
≈ 1.000010312, (15)

which elucidates the entry 4.99 ≈ − log10 |1− log(193/71)| for n = 3 in Table 2.
The fact that the rational numbers fn(1)/fn(−1), including 19/7 for n = 2 and
193/71 for n = 3, are convergents to the continued fraction of Euler’s number e
is further discussed in [9].

5. Short gamma quotients

In this section we discuss a few properties of gamma quotients whose ar-
guments are rational numbers. While no closed forms are known for Γ(1/n)
when n > 2, it turns out that surprisingly short products of gamma functions
at rational arguments have simple evaluations [33], [24], [6], [29], [17], [20]. For
instance, as proposed in [12] and shown in [20],

Γ

(
1

14

)
Γ

(
9

14

)
Γ

(
11

14

)
= 4π3/2. (16)

Let Φ(n) denote the set of integers between 1 and n which are coprime to n. For
example, Φ(12) = {1, 5, 7, 11}. Let φ(n) represent the totient function, that is,
the size of Φ(n). The general result we present in Theorem 5.1 below has been
established in [24] and, independently, in [17] (a nice generalization is developed
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in [20], see Remark 5.3). In both cases, the proof is based on Möbius inversion.
We offer an alternative proof which rests upon Lerch’s identity [2, Theorem
1.3.4]

log Γ(x) =
∂

∂s
ζ(s, x)

∣∣∣∣
s=0

+
1

2
log(2π), (17)

where ζ(s, x) =
∑∞
n=0

1
(n+x)s is the Hurwitz zeta function.

Theorem 5.1. If n is not a prime power, then∏
k∈Φ(n)

Γ

(
k

n

)
= (2π)φ(n)/2. (18)

If n = pm for a prime p, then (18) holds with the right-hand side divided by
√
p.

Proof. Let χ be the principal character modulo n (that is, χ(k) = 1 if k is
coprime to n, and χ(k) = 0 otherwise), and let p1, . . . , pr be the distinct prime
factors of n. Then the Dirichlet L-function associated to χ differs from the
Riemann zeta function

ζ(s) =
∏

p prime

1

1− p−s

only in that the factors corresponding to the primes p1, . . . , pr are missing. In
other words,

L(χ, s) =

∞∑
k=1

χ(k)

ks
= ζ(s)

r∏
j=1

(1− p−sj ). (19)

On the other hand,

nsL(χ, s) =

n∑
k=1

χ(k)ζ

(
s,
k

n

)
.

Taking the derivative with respect to s and applying Lerch’s identity (17), we
have

n∑
k=1

χ(k) log Γ

(
k

n

)
= log(n)L(χ, 0) + L′(χ, 0) +

1

2
φ(n) log(2π).

It follows from (19) that L(χ, 0) = 0. Similarly, it follows that L′(χ, 0) = 0
provided that r > 1. This proves equation (18) unless n is a prime power.
Lastly, if n = pm for some prime p, then

L′(χ, 0) = log(p)ζ(0) = −1

2
log(p),

which proves (18) in the remaining case.

Example 5.2. In the case n = 14, we find

Γ

(
1

14

)
Γ

(
3

14

)
Γ

(
5

14

)
Γ

(
9

14

)
Γ

(
11

14

)
Γ

(
13

14

)
= (2π)3.

11



In light of (16), it follows that

Γ

(
3

14

)
Γ

(
5

14

)
Γ

(
13

14

)
= 2π3/2,

which, as in the case of (16), also follows from the results of [20], which generalize
Theorem 5.1 and are outlined in Remark 5.3. Combining both products and
using Theorem 1.1, one therefore obtains∏

k>0

(k + 3/14)(k + 5/14)(k + 13/14)

(k + 1/14)(k + 9/14)(k + 11/14)
= 2.

Remark 5.3. Note that Φ (n), the set of integers between 1 and n which are
coprime to n, is a group with respect to multiplication modulo n. Assume that
n > 1 is odd, and let A be (a coset of) the cyclic subgroup of Φ (2n) generated
by n+ 2. It is shown in [20] that∏

k∈A

Γ

(
k

2n

)
= 2b(A)π|A|/2,

with |A| denoting the cardinality of A and b (A) the number of elements in
A which exceed n. In particular, this lets us construct lots of identities as in
Example 5.2. To wit, for any A as above,∏

k∈A

Γ
(
k
2n

)
Γ
(
1− k

2n

) = 22b(A)−|A|.

For instance, with n = 31, one choice is A = {1, 33, 35, 39, 47} and we find∏
k>0

(k + 15/62)(k + 23/62)(k + 27/62) (k + 29/62) (k + 61/62)

(k + 1/62)(k + 33/62)(k + 35/62) (k + 39/62) (k + 47/62)
= 8.

Remark 5.4. Equation (18) may be used to produce the identity

φ(n)

2
log(2π) =

∑
x∈Φ(n)

log Γ(x/n)

=
∑

x∈Φ(n)

log Γ(1− x/n)

=
∑

x∈Φ(n)

[
γ
x

n
+

∞∑
k=2

ζ(k)

k
(x/n)k

]

= γ
φ(n)

2
+

∞∑
k=2

ζ(k)

k

∑
x∈Φ(n)

(x/n)k,

where

γ =

∞∑
k=2

(−1)k
ζ(k)

k

12



is Euler’s constant. This may be re-arranged to obtain

log(2π)− γ
2

=

∞∑
k=2

ζ(k)

k

1

φ(n)

∑
x∈Φ(n)

(x/n)k, (20)

again valid for n which are not a prime power. Note that the expression on the
left-hand side of (20) has the interesting property that it is independent of n.
The sums

Ψk(n) :=
∑

x∈Φ(n)

xk

have been studied in [26], where, among other results, it is shown that

Ψk(n) =
nk+1

k + 1

[k/2]∑
m=0

(
k + 1

2m

)
B2m

n2m

∏
p|n

(1− p2m−1).

Remark 5.5. We note that the proof of Theorem 5.1 naturally extends to
certain more general gamma quotients. For instance, consider the real character
χ(n) =

(−d
n

)
where−d < 0 is a negative fundamental discriminant (fundamental

discriminants are squarefree integers congruent to 1 modulo 4, or multiples by
−4 or −8 of such numbers) with associated class number h = h(−d). Then

wζ(s)L(χ, s) =

h∑
j=1

ZQj (s), (21)

where w is the number of roots of unity in Q(
√
d), Q1, . . . , Qh are non-equivalent

reduced binary quadratic forms with discriminant −d, and ZQ denotes the Ep-
stein zeta function

ZQ(s) =

′∑
n,m

1

Q(m,n)s
,

with the sum extending over all integers n,m such that (n,m) 6= (0, 0). The
Kronecker limit formula — see [19] for a nice proof — shows that

ZQ(s) =
a−1

s− 1
+ a0 + a1(s− 1) + . . . ,

with a−1 = 2π/
√
d and

a0 =
4π√
d

(γ − log(d1/4
√

2y|η(z)|2)),

where z = x + iy is the solution to Q(z, 1) = 0 in the upper half-plane, and
η(τ) is the Dedekind eta function. We now expand both sides of (21) around
s = 1 and equate the constant terms. For the right-hand side we employ the

13



Kronecker limit formula, while for the left-hand side we proceed as in the proof
of Theorem 5.1. Using L(χ, 0) = 2h

w , this eventually yields

d∏
m=1

Γ
(m
d

)(−d
m )

=

 h∏
j=1

4π
√
dyj |η(zj)|4

2/w

. (22)

This is the well-known Chowla–Selberg formula [25]. We note that w = 2 unless
d = −3, in which case w = 6, or d = −4, in which case w = 4. Generaliza-
tions of the Chowla–Selberg formula exist, for instance, to arbitrary negative
discriminants and to genera of binary quadratic forms; we refer to [15] and the
references therein. Finally, we remark that, for fixed d, the individual eta values
occurring in (22) differ only by an algebraic factor.

Remark 5.6. Following [16], a period is a number which is the value of an
integral of an algebraic function over an algebraic domain. For example, as
noted in the introduction to [16], the numbers Γ(p/q)q are periods because they
may be represented as beta integrals. More generally, let α1, . . . , αn be rational
numbers. Then Γ(α1) · · ·Γ(αn) is a period whenever Γ(α1+. . .+αn) is a period.
To see this, note that

Γ(α1) · · ·Γ(αn) = B(α1, α2)B(α1+α2, α3) · · ·B(α1+. . .+αn−1, αn)Γ(α1+. . .+αn),

where

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
=

∫ 1

0

tα−1(1− t)β−1dt

is the beta function. Due to the integral representation its values for rational
α, β are periods. It now suffices to observe that periods form a ring.

A similar argument shows that gamma quotients arising from infinite prod-
ucts of rational functions with rational roots are always a quotient of two peri-
ods.

Finally, we remark that, while the ring of periods is countable, it is an open
problem, [16, Problem 3], to exhibit at least one number which is provably not
a period. For instance, it would be a surprise to many if 1/π were a period.

6. Products involving the Thue–Morse sequence

The Thue–Morse sequence tj is defined by tj = 1 if the number of ones in the
binary representation of j is odd and tj = 0 otherwise. For further information
on this sequence and its occurrences in various contexts a beautiful reference is
[1]. Let p(j) = (−1)tj . Then Theorem 1.1 implies that, for m > 1,

∏
k>1

2m−1∏
j=0

(k + j)p(j) =

2m−1∏
j=0

(j!)−p(j). (23)

As we will see below, the right-hand side of (23) further simplifies.

14



Remark 6.1. Note that p(j) = 1 for exactly half of the 2m many numbers
j = 0, 1, . . . , 2m − 1, so that the left-hand side of (23) indeed converges when
m > 1. Denote with S1 the set of integers among 0, 1, . . . , 2m− 1 with p(j) = 1.
Similarly, S−1 consists of those with p(j) = −1. Not only are the two sets
equinumerous, but also

∑
j∈S1

j =
∑
j∈S−1

j and, in fact, as discovered by

Prouhet in 1851, see [32] or [1],∑
j∈S1

jn =
∑
j∈S−1

jn

for all n = 0, 1, . . . ,m− 1.

Example 6.2. For instance, when m = 3 then 0n + 3n + 5n + 6n = 1n + 2n +
4n + 7n for n = 0, 1, 2 as well as∏

k>1

k(k + 3)(k + 5)(k + 6)

(k + 1)(k + 2)(k + 4)(k + 7)
=

2!4!7!

3!5!6!
=

7

3 · 5
.

In the next lemma, we observe that the right-hand side of (23) always sim-
plifies as it did in Example 6.2.

Lemma 6.3. For integers m > 1,

∏
k>1

2m−1∏
j=0

(k + j)p(j) =

2m−1−1∏
j=0

(2j + 1)p(j). (24)

Proof. Note that p(2j) and p(2j + 1) are always of opposite sign. Thus,

2m−1∏
j=0

(j!)−p(j) =

2m−1−1∏
j=0

[
(2j)!

(2j + 1)!

]p(2j+1)

.

It only remains to use that p(2j+ 1) = −p(j), which follows from the definition
of the Thue–Morse sequence.

Example 6.4. Combining Example 6.2 with the corresponding product for
m = 4, one finds∏

k>1

(k + 9)(k + 10)(k + 12)(k + 15)

(k + 8)(k + 11)(k + 13)(k + 14)
=

11 · 13

9 · 15
.

From computing a few more instances, we are led to observe that both sides
of (24) appear to approach 1/2 as m→∞. In other words,

lim
m→∞

2m−1∏
j=0

(2j + 1)p(j) =
1

2
. (25)
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To see that this is indeed true, it is of advantage to also consider

fm(x) =

2m−1∏
j=0

(x+ j)p(j). (26)

This product arises in

∏
k>0

2m−1∏
j=0

(x+ k + j)p(j) =

2m−1−1∏
j=0

(x+ 2j)p(j) = fm( 1
2 ),

which is a natural extension of (24) and can be proved in the same way.
Now the truth of (25) can be seen from the solution [23] to the problem [31]

proposed by Woods. Indeed, denoting with f(x) the limit of fm(x) as m→∞,
we need to show that f(1/2) = 1/2. Note that

fm(x+ 1
2 ) =

2m−1∏
j=0

(x+ 1
2 + j)p(j) =

2m−1∏
j=0

(2x+ 2j + 1)−p(2j+1).

Proceeding as in [23], we thus find that

fm+1(2x)fm(x+ 1
2 ) = fm(x). (27)

With appropriate care one may now apply L’Hôspital’s rule to obtain

f( 1
2 ) = lim

x→0

f(x)

f(2x)
=

f ′(0)

2f ′(0)
=

1

2
,

as desired.

Remark 6.5. Combining terms as in the proof of Lemma 6.3, we note that

f(x) = lim
m→∞

2m−1∏
j=0

(x+ j)p(j) =

∞∏
j=0

(
2j + x

2j + x+ 1

)p(j)
, (28)

because the infinite product converges. It further follows from (27) that f(1)2 =
f(1/2) and hence f(1) = 1/

√
2. In light of (28) this result is equivalently

expressed as

P =

∞∏
j=0

(
2j + 1

2j + 2

)p(j)
=

1√
2
, (29)

which is the evaluation asked for in problem [31]. A beautiful alternative solu-
tion, avoiding analytic tools such as L’Hôspital’s rule, is given in [1]. The clever
alternative proof considers, besides P , the product

Q =

∞∏
j=1

(
2j

2j + 1

)p(j)
,
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and shows that

PQ =
1

2

∞∏
j=1

(
j

j + 1

)p(j)

=
1

2

∞∏
j=1

(
2j + 1

2j + 2

)p(2j+1) ∞∏
j=1

(
2j

2j + 1

)p(2j)
=

1

2
P−1Q.

Cancelling Q, one has again derived P = 1/
√

2. On the other hand, the quantity
Q is much more mysterious. It is not even known whether Q is irrational,
let alone transcendental. Jeffrey Shallit has offered $25 for an answer to this
question.
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[29] R. Vidūnas, Expressions for values of the gamma function, Kyushu J. Math.
59 (2005) 267–283.

[30] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, 4th ed.,
Cambridge University Press, Cambridge, 1927.

[31] D. R. Woods, Elementary problem E2692, Amer. Math. Monthly 85 (1978)
48.

[32] E. M. Wright, Prouhet’s 1851 solution of the Tarry-Escott problem of 1910,
Amer. Math. Monthly 66 (1959) 199–201.

[33] I. J. Zucker, The evaluation in terms of Γ-functions of the periods of elliptic
curves admitting complex multiplication, Math. Proc. Cambridge Philos.
Soc. 82 (1977) 111–118.

19


	Introduction
	Proof and basic examples
	Further applications
	Multiplicative partitions
	A product considered by Ramanujan
	Another product considered by Ramanujan

	Numerical applications
	Numerical evaluations of products
	Numerical evaluations of sums

	Short gamma quotients
	Products involving the Thue–Morse sequence

