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Abstract. Based on the third author’s thesis [Str08] in this article we com-

plete the local recognition of commuting reflection graphs of spherical Coxeter
groups arising from irreducible crystallographic root systems.

1. Introduction

Given a connected graph one may ask to which extent it is determined by its
local graphs, that is, by the induced subgraphs on the vertices adjacent to a par-
ticular vertex. This local recognition of graphs has been studied extensively in the
literature, for instance in [BH77], [CP92], [HS85], [Pas94], [Wee94a], [Wee94b] to
mention a few; see also [BC75], [Coh90], [Hal85]. A particularly guiding example
for the topic of the present article is the local recognition of the Kneser graphs
studied in [Hal80] and [Hal87].

We are interested in the local recognition of Weyl graphs, i.e., graphs on the
reflections of Coxeter groups with the commutation relation as adjacency. A combi-
nation of our findings with results from [BH77], [Hal87], [HS85] yields the following
recognition result.

Main Theorem.
The following are true up to isomorphism.

• A Weyl graph of type An (n > 8), type Bn, Cn (n = 3 or n > 5), type Dn

(n > 9), or type E7 is uniquely determined, as a connected graph, by its
local graphs.

• A Weyl graph of type A6, A7, D7, D8, E6, E8 is uniquely determined by
its local graphs and its size.

• The Weyl graph W of type F4 and its twisted copy (defined at the end of
section 4.1) are the only bichromatic graphs of size 24 with local graphs like
W .

The remaining small Weyl graphs of type An as well as those of types I2(m),
G2, H3, H4 are locally a disjoint union of complete graphs. The graphs of type Dn

are obtained as doubles of those of type An−1, so that local recognition results for
type An transfer to Dn. Finally, types B4 and C4 are treated in Remark 12.
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The local recognition of the Weyl graphs of type A7, E6 and E8 has been estab-
lished in the fundamental work [BH77]. The case of A6, for which the Weyl graph
is locally the Petersen graph, has been studied in [Hal80]. Weyl graphs of types
An and En which are locally cotriangular have been treated in [HS85]. The local
recognition of types Bn and Cn is proved in Theorem 5. The Weyl graph of type
F4 is not uniquely determined by its local graphs (Corollary 11). We nevertheless
characterize this Weyl graph as as one of two tightest graphs with the prescribed
local structure (Theorem 16). In the last section we turn to group theoretical
applications of local recognition results for Weyl graphs.

Acknowledgement. The authors thank the referee for several suggestions that
helped to improve the exposition of this article.

2. Local recognition of graphs

All graphs considered in this text are simple and undirected. We use ⊥ to denote
adjacency, and our notation for operations on graphs like the cartesian product or
joins follows [Har94]. Let Γ be a graph, and x ∈ Γ a vertex. We write x⊥ to denote
the set of neighbors of x, that is, the set of vertices adjacent to x. Likewise, for
X ⊆ Γ we write X⊥ =

⋂
x∈X x⊥. The induced subgraph on x⊥ is called the local

graph at x. A graph Γ is said to be locally homogeneous, if there exists a graph ∆
such that each local graph of Γ is isomorphic to ∆. In this case, Γ is said to be
locally ∆, and ∆ is referred to as the local graph of Γ. If Γ is locally homogeneous,
then we denote its local graph by ∆(Γ).

In this article we are interested in the problem of characterizing a connected
locally homogeneous graph in terms of its local graph. We say that a connected
locally homogeneous graph Γ is locally recognizable, if up to isomorphism Γ is the
only connected graph that is locally ∆(Γ). In case Λ is another locally homogeneous
graph such that ∆(Λ) ∼= ∆(Γ) we say that Λ is locally like Γ.

The above terminology naturally extends to bichromatic graphs. For reasons
that become clear later, we distinguish the vertices of a bichromatic graph as short
versus long. All morphisms between bichromatic graphs are understood to preserve
this distinction. We say that a bichromatic graph is locally homogeneous, if the
local graphs at short vertices are all isomorphic to some bichromatic graph ∆s and
the local graphs at long vertices are all isomorphic to some bichromatic graph ∆`.
In this case we say that ∆s is the short local graph of Γ and that ∆` is the long
local graph of Γ. If Γ is a bichromatic locally homogeneous graph, then we denote
its short local graph by ∆s(Γ) and its long local graph by ∆`(Γ). If Λ is another
bichromatic locally homogeneous graph such that the short as well as the long local
graphs of Λ and Γ are isomorphic as bichromatic graphs, then we say that Λ is
locally like Γ. Finally, given a graph Γ we denote with Γs and Γ` the bichromatic
graphs obtained from Γ with all vertices treated as short respectively long.

One easily verifies that the Kneser graph K(n, k) is locally homogeneous with
local graph K(n−k, k). The second author proved in [Hal87] that for n sufficiently
large compared to k the Kneser graphs are locally recognizable; for k = 2, it
sufficies to require n ≥ 7. In [Hal80] he classified the three connected graphs which
are locally the Petersen graph K(5, 2). The classification of graphs that are locally
K(6, 2) is contained in [BH77].
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Theorem 1. ([Hal87], [Hal80], [BH77]) Let k > 1, and Γ be a connected graph
that is locally K(n, k).

• If n > 3k + 1 then Γ ∼= K(n+ k, k).
• If (n, k) = (5, 2) then Γ is isomorphic to one of the graphs K(7, 2), 3 ·
K(7, 2), or ΣL2,25. In particular, |Γ| ∈ {21, 63, 65}.
• If (n, k) = (6, 2) then Γ is isomorphic to one of the graphs K(8, 2), Sp6(2)

minus {x} ∪ x⊥ for some x, or N−6 (2). In particular, |Γ| ∈ {28, 32, 36}. �

Here, the graph 3 · K(7, 2) is the 3-fold cover of K(7, 2), and ΣL2,25 is the
graph on the conjugates of the unique non-trivial field automorphism of F25 in
the special semilinear group ΣL(2, 25) with two elements adjacent whenever they
commute. More details can be found in [Hal80]. Further, the graph Sp2n(2) is
the graph on the non-zero vectors of V = F2n

2 with two vectors adjacent whenever
they are perpendicular with respect to a non-degenerate symplectic form B on V .
Up to isomorphism there are only two quadratic forms Q+ and Q−, corresponding
to maximal or minimal Witt index, on V that B is associated to, and the graph
N ε

2n(2) is the induced subgraph of Sp2n(2) on the vectors that are non-singular
under Qε. For more details about these graphs we refer to [HS85].

Ernest E. Shult and the second author actually proved a lot more in [HS85].
They characterize the graphs that are locally cotriangular in the following sense.
A graph is said to be cotriangular, if every pair x, y of non-adjacent vertices is
contained in a cotriangle, that is, a 3-coclique {x, y, z} such that every other vertex
is adjacent to either all or exactly one of the vertices x, y, z. Observe that a join
Γ + Λ is cotriangular if and only if both Γ and Λ are. Denote with Γ∗ the reduced
graph of Γ, that is, the graph on the equivalence classes of vertices of Γ with the
same closed neighborhood and two classes adjacent whenever some representatives
are adjacent. Then Γ is cotriangular if and only if Γ∗ is. A graph Γ is called
completely reduced in this context whenever Γ∗ = Γ and Γ can not be decomposed
into Γ1 + Γ2 with non-empty Γ1,Γ2. A classification of all cotriangular graphs is
given by the following theorem due to Ernest E. Shult.

Theorem 2. ([Shu74]) A finite completely reduced graph is cotriangular if and only
if it is isomorphic to one of the graphs

K(n, 2), n > 2; Sp2n(2), n > 2; N ε
2n(2), ε = ±1, n > 3.

�

The graphs K(2, 2) ∼= K1 and K(3, 2) ∼= K3 are considered degenerate. Let D
denote the set of graphs Γ such that Γ∗ is a finite completely reduced cotriangular
graph. If G is a collection of graphs, then we say that a graph Γ is locally G if for
each x ∈ Γ the local graph at x is isomorphic to some graph of G.

Theorem 3. ([HS85, Main Theorem]) Let Γ be connected and locally D. Then
either Γ is locally {K1,K3} or Γ is isomorphic to one of the following graphs

• K(n, 2) where n > 7,
• Sp2n(2) possibly with a polar subspace deleted,
• Hε

2n(T ), Gε2n,
• 3 ·K(7, 2), ΣL2,25, or N+

6 (3).

�
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The graphs Hε
2n(T ), Gε2n are derived from the graph Sp2n(2); see [HS85]. Note

that the case k = 2 of Theorem 1 can be regarded as a special case of the classi-
fication in Theorem 3. The following special case of Theorem 3 has already been
established in [BH77] by Francis Buekenhout and Xavier Hubaut.

Theorem 4. ([BH77, Theorem 2 (3)]) Let Γ be connected and locally Sp2n(2)
for some n > 2. Then Γ is isomorphic to one of the following graphs N+

2n+2(2),

N−2n+2(2), or Sp2n+2(2) minus {x} ∪ x⊥ for some x. �

The preceding theorem has been generalized in [CS90], [CP92].

3. Local recognition of Weyl graphs

We assume that the reader is familiar with Coxeter groups and root systems as
treated in [Hum92] or [Bou02]. The commuting graph of a group G on X ⊆ G is
the graph with vertex set X in which two vertices g, h ∈ X are adjacent whenever
g and h commute. We will study the commuting graphs of finite Coxeter groups
on their reflections. Since we are interested in local recognition results we will
focus on finite irreducible Coxeter groups for which the reflection graph is locally
homogeneous. The graphs arising from the cases H3, H4 and I2(m) are locally
disjoint unions of complete graphs and therefore not interesting for the purpose of
local recognition. Hence, we further restrict to Coxeter groups which arise from
irreducible crystallographic root systems. These are those with Dynkin diagram
equal to one of An (n > 1), Bn or Cn (n > 2), Dn (n > 4), E6, E7, E8, F4, or G2.

Recall that each root of an irreducible crystallographic root system Φ is consid-
ered either short or long (with the convention that in the absence of two distinct
root lengths every root is long). If M is the Dynkin diagram of Φ then we de-
note with W (M) the Weyl group of Φ, i.e., the group generated by the reflections
through the roots of Φ, together with the notion of a short (respectively long) root
reflection by W (M). The Weyl graph W(M) is the commuting graph of W (M)
on its reflections. If M is simply laced then all reflections in W (M) are conju-
gate, which implies that the Weyl graph W(M) is locally homogeneous. On the
other hand, if M is not simply laced then there are two conjugacy classes of reflec-
tions in W (M), namely short and long root reflections, and we regard W(M) as
a bichromatic graph. Instead of assigning arbitrary colors we accordingly refer to
the vertices of W(M) corresponding to short (respectively long) root reflections as
short (respectively long) vertices. As a bichromatic graph, the Weyl graph W(M)
is locally homogeneous.
W(An) is the graph with vertices yi,j , 1 6 i < j 6 n+ 1, such that yi,j ⊥ yk,l if

and only if {i, j} ∩ {k, l} = ∅. Consequently, the Weyl graph W(An) is isomorphic
to the Kneser graph K(n+ 1, 2). Likewise, W(Dn) is the graph with vertices yi,j ,
1 6 i, j 6 n, such that yi,j ⊥ yk,l if and only if {i, j} ∩ {k, l} = ∅ or (k, l) = (j, i).
W(Dn) is therefore isomorphic to the composition graph K(n, 2)[K2], that is, the
graph arising from the Kneser graph K(n, 2) by replacing each vertex by an adjacent
pair of vertices. Accordingly, Theorem 1 applies and yields the recognition results
of the Main Theorem for types An and Dn. By [BH77] we have W(E6) ∼= N−6 (2),
W(E7) ∼= Sp6(2) and W(E8) ∼= N+

8 (2). The corresponding recognition results of
the Main Theorem follow from Theorems 1, 3 and 4.
W(Bn) is the bichromatic graph with vertices yi,j , 1 6 i, j 6 n, where the yi,i

are short and the yi,j with i 6= j are long vertices, and yi,j ⊥ yk,l if and only
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if {i, j} ∩ {k, l} = ∅ or (k, l) = (j, i). The Weyl graph W(Cn) is obtained from
W(Bn) by exchanging the role of short and long vertices. The recognition results
of the Main Theorem for types Bn and Cn are therefore contained in the following
theorem.

Theorem 5. Let n = 3 or n > 5, and let Γ be a connected bichromatic graph which
is locally like W(Bn). Then Γ ∼=W(Bn).

Proof. It is straightforward to check the case n = 3.
Next, let n > 6. Let X be a short component of Γ and x ∈ X a short vertex.

The short induced subgraph on x⊥ is a clique on n − 1 elements which implies
that X is a clique on n elements. By assumption, the long neighbors of x induce a
subgraph isomorphic to the long induced subgraph of W(Bn−1). This subgraph is
isomorphic toW(Dn−1) and, in particular, is connected for n > 6. This implies that
all long neighbors of x are contained in a single long component Y of Γ. Consider
a short vertex x1 ∈ X adjacent to x. Again, all long neighbors of x1 lie in one
long component of Γ. But looking at {x, x1}⊥ ⊂ x⊥ we see that x and x1 share
long neighbors whence this component has to be Y as well. Since X is connected
this shows that all long vertices adjacent to some vertex of X are contained in Y .
Likewise, let y ∈ Y . The short induced subgraph of y⊥ is a clique on n vertices
and thus in particular connected. Again, we see that for a long vertex y1 adjacent
to y the common neighbors {y, y1}⊥ contain a short vertex. Therefore the same
argument as before shows that all short vertices adjacent to some vertex of Y are
contained in X. Since Γ is connected this proves that X and Y are the only short
respectively long components of Γ.

We count the number of long vertices by counting the long neighbors of the n
short vertices of Γ. By assumption, a short vertex has (n−1)(n−2) long neighbors.
Further, two short vertices have (n − 2)(n − 3) long neighbors in common, three
short vertices have (n−3)(n−4) long neighbors in common, and so on. Thus there
are(

n

1

)
(n− 1)(n− 2)−

(
n

2

)
(n− 2)(n− 3) + . . .+ (−1)n−1

(
n

n− 2

)
2 = n(n− 1)

long vertices in Γ. Note that for the above equation we exploited that the alternat-
ing sum of the binomial coefficients equals zero, that is,

∑n
k=0(−1)k

(
n
k

)
= 0.

Let x1, x2, . . . , xn be the short vertices of Γ. Γ is locally W(Bn−1) at short
vertices which implies that for 1 6 i 6= j 6 n the common neighborhood {xr :
r 6∈ {i, j}}⊥ contains exactly two long vertices which we denote by yi,j and yj,i.
Since a long vertex is adjacent to exactly n− 2 short vertices the yi,j thus defined
are all distinct. By construction, yi,j ⊥ yj,i. Further, the yi,j exhaust Y because
Γ contains exactly n(n − 1) long vertices. Given two vertices yi,j and yk,l, we
find m ∈ {1, 2, . . . , n}\{i, j, k, l} whence yi,j and yk,l are both contained in x⊥m

∼=
W(Bn−1). yi,j is characterized in x⊥m as one of the two long vertices contained
in {xr : r 6∈ {i, j,m}}⊥. Likewise, yk,l is characterized in x⊥m as one of the two
long vertices contained in {xr : r 6∈ {k, l,m}}⊥. Consequently, for {i, j} 6= {k, l},
yi,j ⊥ yk,l if and only if {i, j} ∩ {k, l} = ∅. Hence, Γ ∼=W(Bn).

Finally, consider the case n = 5. We still find that each short component is a
clique on 5 vertices. Let X be one such short component. We count that there are
20 long vertices neighbored to one of the vertices of X. On the other hand, we see
again that each long component has short neighbors in only one short component.
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Accordingly, the 20 long neighbors of X constitute a union of long components.
However, a long component is locallyK1t3·K2 and therefore has at least 12 vertices.
We conclude that there is only one long component Y with vertices neighbored toX.
Now, the remainder of the preceding argument applies and shows that Γ ∼=W(B5)
as claimed. �

The case n = 4 of Theorem 5 is discussed in Remark 12 where it is shown that
there are infinitely many finite connected bichromatic graphs that are locally like
W(B4). The case of type F4 is discussed in detail in the next section. Note that
the Weyl graph W(G2) is isomorphic to three disjoint edges of mixed type.

4. Local recognition of W(F4)

4.1. Graphs locally like W(F4). The Weyl graph W(F4) is a connected bichro-
matic locally homogeneous graph on 24 vertices with short local graphW(B3) and
long local graph W(C3). As we will see shortly, W(F4) is not locally recogniz-
able. Before we turn to investigating additional constraints under which we seek
to recognize W(F4) nonetheless, we study connected bichromatic graphs Γ which
are locally like W(F4). The results we obtain then guide our way in determining
appropriate conditions under which we are able to recognize W(F4) alongside its
twisted copy. An easy but crucial observation to start with is the following.

Proposition 6. Let Γ be locally like W(F4). The short (respectively long) induced
subgraph of Γ is isomorphic to a disjoint union of 4-cliques. �

Let Γ be a bichromatic graph that is locally likeW(F4). Observe that the graph
obtained from Γ by exchanging the roles of short and long vertices is locally like
W(F4) as well. Results that we obtain for short vertices of graphs locally like
W(F4) are therefore also true for long vertices.

Paraphrasing Proposition 6, the vertices of Γ come in 4-cliques of the same type.
In order to simplify things it is natural to collapse these 4-cliques into single vertices.

Definition 7. Let Λ be a graph and Π a partition of its vertices. The contraction
Λ/Π is the graph on Π such that two sets A,B ∈ Π are adjacent whenever there is
a ∈ A and b ∈ B which are adjacent in Λ. If Λ is bichromatic then Π is required
to partition into sets of short and long vertices and Λ/Π is a bichromatic graph in
the natural way.

In this language, we thus investigate the collapsed graph Γ/Π where Π is the
partition of Γ into short and long 4-cliques. To this end, we analyze how these
4-cliques relate to each other.

Proposition 8. Let Γ be locally like W(F4), and x1, x2, x3, x4 a short 4-clique in
Γ. Let i 6= j and k 6= l.

• {xi, xj}⊥ is locally Ks
2 tK`

2. In particular, for any pair xi, xj there exist
unique long vertices yi,j , yj,i contained in {xi, xj}⊥.
• {xi, xj , xk}⊥ contains no long vertex if i, j, k are distinct. In particular, the

vertices yi,j are all distinct.
• There are exactly 12 long vertices adjacent to at least one of the xi, namely

the above vertices yi,j.
• yi,j ⊥ yk,l implies that {k, l} = {i, j} or {k, l} ∩ {i, j} = ∅.
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Proof. Exploiting the local structure at xi we see that every short adjacent pair
xi, xj has exactly two long neighbors in common which we will (arbitrarily) denote
by yi,j and yj,i. Accordingly, yi,j ⊥ yj,i. Looking at the neighbors of a vertex
yi,j reveals that xi and xj are the only short vertices among x1, x2, x3, x4 which
are adjacent to yi,j . Consequently, the yi,j are 12 distinct vertices. Since three
adjacent short vertices share no long neighbors we count that exactly(

4

1

)
6−

(
4

2

)
2 = 12

long vertices are neighbored to at least one of the vertices x1, x2, x3, x4. Conse-
quently, the long neighbors of the xi are precisely the vertices yi,j . For the last
claim, assume that yi,j ⊥ yk,l and {k, l} ∩ {i, j} = {i0}. A look at the neighbors of
xi0 shows that this is a contradiction. �

If Γ is locally likeW(F4) and Π is the partition of Γ into short and long 4-cliques,
then we add the following extra structure to the collapsed graph Γ/Π. Two vertices
X,Y ∈ Γ/Π are said to be strongly connected if every x ∈ X is at distance 1 from
Y in Γ and vice versa. In this case, we think of X and Y as being connected by two
edges, the reason of which will be clear from the next proposition. The number of
neighbors of X where we count those neighbors twice that are strongly connected
to X is said to be the bivalency of X.

Proposition 9. Let Γ be locally like W(F4), and let Π be the partition of Γ into
short and long 4-cliques. The contraction Γ/Π is bipartite of bivalency 6.

Proof. LetX ∈ Γ/Π be a short vertex. By Proposition 6, X has only long neighbors.
X = {x1, x2, x3, x4} is a 4-clique of Γ and according to Proposition 8 there are 12
long vertices yi,j at distance 1 from X in Γ. Each pair of vertices yi,j , yj,i is
contained in exactly one long neighbor Y{i,j} of X. Let k, l be the indices such that
{i, j, k, l} = {1, 2, 3, 4}. Then, by Proposition 8, either Y{k,l} 6= Y{i,j}, in which case
both long vertices are connected to X by just one edge, or Y{k,l} = Y{i,j}, in which
case both long vertices are connected to X by two edges. In any case, we count
that the bivalency of X is 6. �

We now do the reverse and prove that every bipartite graph of bivalency 6 is
the contraction of some graph which is locally like W(F4). Note, however, that
non-isomorphic graphs locally like W(F4) can have isomorphic contractions.

Lemma 10. For every connected bipartite graph Λ of bivalency 6 there is a con-
nected bichromatic graph Γ that is locally like W(F4) such that Γ/Π = Λ where Π
is the partition of Γ into short and long 4-cliques.

Proof. Let Λ be a bipartite graph of bivalency 6. Exploiting that Λ is 2-colorable,
we may identify Λ with a bichromatic graph such that no two vertices of the same
type are adjacent. For any vertex x of Λ choose an injection

x⊥ →
(

4

2

)
, y 7→ a(x, y)

from its neighbors to the six 2-subsets of {1, 2, 3, 4} such that for strongly connected
vertices x, y the complement of a(x, y) is not attained. This is always possible since
Λ has bivalency 6. To every directed edge (x, y) we thus assigned the 2-subset
a(x, y) of {1, 2, 3, 4}. Construct the bichromatic graph Γ from Λ as follows. For
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every vertex x ∈ Λ add a 4-clique x1, x2, x3, x4 of the same type as x to Γ. Then,
for x, y ∈ Λ let xi and yj be adjacent in Γ if and only if x and y are adjacent in
Λ and the following holds: either (i, j) ∈ a(x, y) × a(y, x), or x and y are strongly

connected and (i, j) ∈ a(x, y)× a(y, x). By construction, contracting the 4-cliques
of Γ produces Λ. It is straightforward to check that Γ is locally like W(F4). �

Corollary 11. There exist infinitely many non-isomorphic finite connected bichro-
matic graphs that are locally like W(F4).

Proof. We claim that there are infinitely many finite connected bipartite graphs
Λ that are locally K6 and hence of bivalency 6 (if no vertices are assumed to be
strongly connected). To this end, note that the graphs Ck×Cm×Cn are connected
and locally K6 for k,m, n > 4. Since cycles Cn are 2-colorable whenever n is even,
the graphs Ck×Cm×Cn are 2-colorable and hence bipartite whenever k, m, n are
all even. The claim follows from Lemma 10. �

Remark 12. Analogous to Lemma 10 one shows that for every connected bipartite
graph Λ of bivalency (2, 6) (meaning that vertices of one type have valency 2 and
vertices of the other type have valency 6) there is a connected bichromatic graph
Γ that is locally like W(B4) such that Γ/Π = Λ where Π is again the partition of
Γ into short and long 4-cliques. This easily implies that there are infinitely many
finite connected bichromatic graphs that are locally like W(B4).

Let Γ be locally like W(F4) and assume that the collapsed graph Γ/Π contains
strongly connected vertices X and Y . This means that, say, X = x1, x2, x3, x4 are
short vertices, Y = y1, y2, y3, y4 are long vertices, and we have the adjacencies

x1, x2 ⊥ y1, y2, x3, x4 ⊥ y3, y4.

It is straightforward to check that replacing these by

x1, x2 ⊥ y3, y4, x3, x4 ⊥ y1, y2

produces a graph Γ′ which is also locally like W(F4). We say that Γ′ is a twisted
copy of Γ. In particular, for Γ =W(F4) these twisted copies are all isomorphic and
we denote the resulting graph by W(F4)′.

4.2. Recognition results. We now discuss further properties of the Weyl graph
W(F4) in order to characterize W(F4) among the connected bichromatic graphs
that are locally like W(F4). For more details we refer to the thesis [Str08] of the
third author. We start with some easy observations.

Proposition 13. Let Γ be a finite bichromatic graph that is locally like W(F4).
Then the numbers of short and long vertices in Γ are the same, |Γ| is divisible by 8
and |Γ| > 24. �

Since |W(F4)| = 24 we see that, in a sense, W(F4) is maximally tight among
the graphs that are locally like W(F4). There are several further properties of a
graph, for instance its diameter, that describe its tightness. The following notion
of tight connectedness is another way to express tightness of a bichromatic graph.

Definition 14. A bichromatic graph is said to be tightly connected if every long
vertex has a neighbor in every short component and vice versa.
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These three notions of tightness, however, are not local in nature (where a local
property is meant to be one which can be expressed in terms of the neighbors of each
vertex). In order to find a more local notion to describe the tightness of W(F4) we
investigate the relation of vertices at distance 2. The following is straightforward
to check.

Proposition 15. Let Γ be locally like W(F4), and let x, y ∈ Γ be at distance 2.

• If x, y are both short (respectively long) vertices then {x, y}⊥ ∼= µ(x, y) ·K`
1

(respectively Ks
1) for some µ(x, y) ∈ {1, 2, 3}.

• If x, y are of mixed type then {x, y}⊥ ∼= µs(x, y) ·Ks
2 tµ`(x, y) ·K`

2 for some
µs(x, y) + µ`(x, y) ∈ {1, 2}.

For the Weyl graph W(F4) the parameters µ, µs, µ` defined in Proposition 15
are constant and take the maximum possible values µ = 3 and µs = µ` = 1 which
is another, more local, instantiation of the tightness of W(F4). Notice that the
condition µs = µ` = 1 is equivalent to the contraction Γ/Π, studied in Proposition

9, being locally homogeneous with ∆s(Γ/Π) ∼= K3
`

and ∆`(Γ/Π) ∼= K3
s
.

The following theorem summarizes our recognition results for the Weyl graph
W(F4). Note that all of the provided conditions under which a graph Γ is almost
recognized as W(F4) are statements which describe the tightness of Γ.

Theorem 16. Let Γ be a connected bichromatic graph that is locally like W(F4).
Assume that

• |Γ| = 24, or
• Γ is tightly connected, or
• Γ has diameter 2, or
• µ = 3.

If one of these conditions holds then Γ is isomorphic toW(F4) or to its twisted copy
W(F4)′. In particular, Aut(Γ) ∼= W (F4)/Z where Z denotes the center of W (F4).

We prove Theorem 16 by a series of propositions. The proof of the case µ = 3 is
similar in spirit to the previous ones. It is therefore omitted; the interested reader
is referred to [Str08] for the details.

Proposition 17. Let Γ be a connected bichromatic graph that is locally likeW(F4).
If |Γ| = 24 then Γ ∼=W(F4) or Γ ∼=W(F4)′. Further, Aut(Γ) ∼= W (F4)/Z.

Proof. As observed in Proposition 13, every graph that is locally like W(F4) has
at least 12 short and 12 long vertices. Γ therefore consists of exactly 12 vertices of
each type.

Let x1, x2, x3, x4 be a short 4-clique. Adopting the notation of Proposition 8, let
yi,j and yj,i be the long vertices adjacent to both xi and xj . The yi,j are 12 distinct
vertices and therefore constitute the long vertices of Γ. It follows from Proposition
8 that the three long 4-cliques are given by yi,j , yj,i, yk,l, yl,k for disjoint {i, j} and
{k, l}.

Each of the remaining eight short vertices has exactly two long neighbors in
each of the three long 4-cliques. Let x5 be one of remaining short vertices. The
two neighbors of x5 in a 4-clique yi,j , yj,i, yk,l, yl,k are one of yi,j , yj,i along with
one of yk,l, yl,k. We ambiguously defined the vertices yi,j , yj,i as the long vertices
contained in {xi, xj}⊥ so we may as well assume that x5 is adjacent to yi,j and
yk,l with i < j and k < l. Let x6 be the unique short vertex also adjacent to
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y1,2, y3,4. Likewise, let x7 be the short vertex also adjacent to y1,3, y2,4, and x8 the
short vertex also adjacent to y1,4, y2,3. By construction, x5, x6, x7, x8 is a 4-clique.
Notice that for instance x5, x6 ∈ {y1,2, y3,4}⊥ implies that x7, x8 ∈ {y2,1, y4,3}⊥.
Altogether this determines the induced subgraph on x1, x2, . . . , x8 along with the
vertices yi,j .

Let x9, x10, x11, x12 be the remaining short 4-clique. We may assume that
x9, x10 are the short vertices contained in {y1,2, y4,3}⊥. Accordingly, x11, x12 ∈
{y2,1, y3,4}⊥. We may also assume that x9 is contained in {y1,3, y4,2}⊥ (because if
both x9 and x10 were not contained in {y1,3, y4,2}⊥ then both x11, x12 ∈ {y1,3, y4,2}⊥
which contradicts x11, x12 ∈ {y2,1, y3,4}⊥). Further, we may assume that x11 is the
second short vertex contained in {y1,3, y4,2}⊥. Consider the two short vertices in
{y1,4, y3,2}⊥. These can be either x9, x12 or x10, x11, and either choice determines
Γ. Denote with Γ1 the graph corresponding to the choice x9, x12 ∈ {y1,4, y3,2}⊥,
and with Γ2 the graph corresponding to the choice x10, x11 ∈ {y1,4, y3,2}⊥. The
following table summarizes adjacency involving the vertices x9, x10, x11, x12.

by construction x9, x10 ⊥ y1,2, y4,3 x11, x12 ⊥ y2,1, y3,4
x9, x11 ⊥ y1,3, y4,2 x10, x12 ⊥ y3,1, y2,4

Γ1 x9, x12 ⊥ y1,4, y3,2 x10, x11 ⊥ y4,1, y2,3
Γ2 x9, x12 ⊥ y4,1, y2,3 x10, x11 ⊥ y1,4, y3,2

An implementation in the computer algebra system SAGE, see [SAG07], of the
graphs Γ1 and Γ2 can be found in the appendix of [Str08]. In particular, it is verified
that Γ1 and Γ2 are non-isomorphic, that the automorphism group of both graphs
is isomorphic to W (F4)/Z, and that Γ1 is isomorphic to W(F4). Accordingly, Γ2

is isomorphic to the twisted copy W(F4)′. �

Proposition 18. Let Γ be a connected bichromatic graph that is locally likeW(F4).
If Γ is tightly connected then Γ ∼=W(F4) or Γ ∼=W(F4)′.

Proof. Fix a short 4-clique x1, x2, x3, x4. Because of tightness every long vertex
is adjacent to one of the xi, and by Proposition 8 there are exactly 12 such long
vertices. Thus Γ consists of 12 long vertices. Likewise, Γ contains exactly 12 short
vertices. Hence, |Γ| = 24, and the claim follows from Proposition 17. �

Proposition 19. Let Γ be a connected bichromatic graph that is locally likeW(F4).
If Γ has diameter 2 then Γ ∼=W(F4) or Γ ∼=W(F4)′.

Proof. Let x1, x2, x3, x4 be a short 4-clique. As in Proposition 8 let yi,j , yj,i be the
long vertices adjacent to both xi and xj . Assume that there is a long vertex v which
is not among the 12 long vertices yi,j . Because v is not adjacent to any of the xi and
since the diameter of Γ is 2, we find a long vertex that connects x1 and v. Without
loss of generality let this long vertex be y1,2. This prevents y1,2, y2,1, y3,4, y4,3 from
forming a long 4-clique. By Proposition 8 there are thus long vertices v1, v2 not
among the yi,j such that y3,4, y4,3, v1, v2 form a long 4-clique. Again, v1 is not
adjacent to any of the xi and hence is connected to x1 by a long vertex. This is a
contradiction since the long vertices adjacent to x1 are the vertices y1,j , yj,1.

Consequently, Γ contains no further long vertices besides the 12 vertices yi,j , and
hence, by Proposition 13, |Γ| = 24. Apply Proposition 17. �
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5. group-theoretic applications

Our guiding example for the application of the local recognition of graphs in
group theory is the characterization of the symmetric groups by means of the struc-
ture of its transposition centralizers; cf. [GLS94, Theorem 27.1]. A detailed proof of
[GLS94, Theorem 27.1] using local recognition results for the Weyl graphs of type
An is contained in the third author’s thesis [Str08]; that proof runs along the lines
of the proof of [CCG05, Theorem 1.2]. An early example of such results can be
found in [Mul78] which along with [BH77] has been one of the original motivations
for the second author to pursue the local recognition of Kneser graphs in [Hal87].
Another fundamental example for this theme is [Pas94].

Likewise, the recognition results for the Weyl graph of type F4 discussed in the
previous section give rise to the following local characterization of the Weyl group
W (F4). Again, we refer to [Str08] for a proof inspired by [CCG05].

Theorem 20. Let G be a group with non-conjugate involutions x, y such that

• CG(x) = 〈x〉 × J with J ∼= W (B3),
• CG(y) = 〈y〉 ×K with K ∼= W (C3),
• x (respectively y) is a short (respectively long) root reflection in K (respec-

tively J),
• J ∩K contains involutions x1, y1 such that x1 (respectively y1) is a short

(respectively long) root reflection in K as well as in J , and
• there are a long root reflection y0 6= y, y1 in J and a short root reflection
x0 6= x, x1 in K such that x0 and y0 commute.

If G = 〈J,K〉 then G ∼= W (F4).

The interest in group-theoretic local recognition results like Theorem 20 stems
from the classification of finite simple groups (outlined in [GLS94]) and the fact
that the majority of finite simple groups arises from (twisted) Chevalley groups.
These can be defined as groups generated by subgroups isomorphic to SL(2, q)
subject to certain relations by the Curtis–Tits theorem formulated as in [Pha70],
[Hum72], [Tim04], by Phan’s theorems [Pha77a], [Pha77b], and by the Phan-type
theorems [BGHS07], [GHS03], [GW]. Recently, see [Gra, Local recognition theo-
rem 2], Kristina Altmann and the first author proved a local recognition result for
Chevalley groups of (twisted) type A7 and E6 based on results and techniques of
[Alt07]; this result makes serious use of the local recognition of graphs that are
locally the Weyl graph of type A5 and of the Curtis–Tits theorem and Phan’s the-
orems. We hope that our analysis can help to approach a similar recognition result
for Chevalley groups of type F4 based on the Phan-type theorem of type F4 proved
by Hoffman, Mühlherr, Shpectorov and the first author and published in [GW].
For more details we refer to the thesis [Str08] of the third author and the survey
[Gra] of the first author.
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