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BRUCE C. BERNDT AND ARMIN STRAUB

Abstract. In his third notebook, Ramanujan claims that∫ ∞

0

cos(nx)

x2 + 1
log x dx+

π

2

∫ ∞

0

sin(nx)

x2 + 1
dx = 0.

In a following cryptic line, which only became visible in a recent reproduction of
Ramanujan’s notebooks, Ramanujan indicates that a similar relation existed if log x
were replaced by log2 x in the first integral and log x were inserted in the integrand
of the second integral. One of the goals of the present paper is to prove this claim
by contour integration. We further establish general theorems similarly relating large
classes of infinite integrals and illustrate these by several examples.

1. Introduction

If you attempt to find the values of the integrals∫ ∞
0

cos(nx)

x2 + 1
log x dx and

∫ ∞
0

sin(nx)

x2 + 1
dx, n > 0, (1.1)

by consulting tables such as those of Gradshteyn and Ryzhik [3] or by invoking a
computer algebra system such as Mathematica, you will be disappointed, if you hoped
to evaluate these integrals in closed form, that is, in terms of elementary functions. On
the other hand, the latter integral above can be expressed in terms of the exponential
integral Ei(x) [3, formula 3.723, no. 1]. Similarly, if 1/(x2 + 1) is replaced by any
even rational function with the degree of the denominator at least one greater than
the degree of the numerator, it does not seem possible to evaluate any such integral in
closed form.

However, in his third notebook, on page 391 in the pagination of the second volume
of [5], Ramanujan claims that the two integrals in (1.1) are simple multiples of each
other. More precisely,∫ ∞

0

cos(nx)

x2 + 1
log x dx+

π

2

∫ ∞
0

sin(nx)

x2 + 1
dx = 0. (1.2)

Moreover, to the left of this entry, Ramanujan writes, “contour integration.” We now
might recall a couple sentences of G. H. Hardy from the introduction to Ramanujan’s
Collected Papers [4, p. xxx], “. . . he had [before arriving in England] never heard of
. . . Cauchy’s theorem, and had indeed but the vaguest idea of what a function of a
complex variable was.” On the following page, Hardy further wrote, “In a few years’
time he had a very tolerable knowledge of the theory of functions . . . .” Generally, the
entries in Ramanujan’s notebooks were recorded by him in approximately the years
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2 BRUCE C. BERNDT AND ARMIN STRAUB

1904–1914, prior to his departure for England. However, there is evidence that some
of the entries in his third notebook were recorded while he was in England. Indeed,
in view of Hardy’s remarks above, almost certainly, (1.2) is such an entry. A proof of
(1.2) by contour integration was given by the first author in his book [2, pp. 329–330].

The identity (1.2) is interesting because it relates in a simple way two integrals that
we are unable to individually evaluate in closed form. On the other hand, the simpler
integrals ∫ ∞

0

cos(nx)

x2 + 1
dx =

πe−n

2
and

∫ ∞
−∞

sin(nx)

x2 + 1
dx = 0 (1.3)

have well-known and trivial evaluations, respectively.
With the use of the most up-to-date photographic techniques, a new edition of Ra-

manujan’s Notebooks [5] was published in 2012 to help celebrate the 125th anniversary
of Ramanujan’s birth. The new reproduction is vastly clearer and easier to read than
the original edition. When the first author reexamined (1.2) in the new edition, he
was surprised to see that Ramanujan made a further claim concerning (1.2) that was
not visible in the original edition of [5]. In a cryptic one line, he indicated that a
relation similar to (1.2) existed if log x were replaced by log2 x in the first integral and
log x were inserted in the integrand of the second integral of (1.2). One of the goals
of the present paper is to prove (by contour integration) this unintelligible entry in
the first edition of the notebooks [5]. Secondly, we establish general theorems relating
large classes of infinite integrals for which individual evaluations in closed form are not
possible by presently known methods. Several further examples are given.

2. Ramanujan’s Extension of (1.2)

We prove the entry on page 391 of [5] that resurfaced with the new printing of [5].

Theorem 2.1. We have∫ ∞
0

sin(nx)

x2 + 1
dx+

2

π

∫ ∞
0

cos(nx)

x2 + 1
log x dx = 0 (2.1)

and ∫ ∞
0

sin(nx) log x

x2 + 1
dx+

1

π

∫ ∞
0

cos(nx) log2 x

x2 + 1
dx =

π2e−n

8
. (2.2)

Proof. Define a branch of log z by −1
2
π < θ = arg z ≤ 3

2
π. We integrate

f(z) :=
einz log2 z

z2 + 1

over the positively oriented closed contour CR,ε consisting of the semi-circle CR given
by z = Reiθ, 0 ≤ θ ≤ π, [−R,−ε], the semi-circle Cε given by z = εeiθ, π ≥ θ ≥ 0, and
[ε, R], where 0 < ε < 1 and R > 1. On the interior of CR,ε there is a simple pole at
z = i, and so by the residue theorem,∫

CR,ε

f(z)dz = 2πi
e−n · (−1

4
π2)

2i
= −e

−nπ3

4
. (2.3)
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Parameterizing the respective semi-circles, we can readily show that∫
Cε

f(z)dz = o(1), (2.4)

as ε→ 0, and ∫
CR

f(z)dz = o(1), (2.5)

as R→∞. Hence, letting ε→ 0 and R→∞ and combining (2.3)–(2.5), we conclude
that

−e
−nπ3

4
=

∫ 0

−∞

einx(log |x|+ iπ)2

x2 + 1
dx+

∫ ∞
0

einx log2 x

x2 + 1
dx (2.6)

=

∫ ∞
0

(cos(nx)− i sin(nx))(log x+ iπ)2

x2 + 1
dx+

∫ ∞
0

(cos(nx) + i sin(nx)) log2 x

x2 + 1
dx.

If we equate real parts in (2.6), we find that

−e
−nπ3

4
=

∫ ∞
0

cos(nx){2 log2 x− π2}+ 2π sin(nx) log x

x2 + 1
dx. (2.7)

It is easy to show, e.g., by contour integration, that∫ ∞
0

cos(nx)

x2 + 1
dx =

πe−n

2
. (2.8)

(In his Quarterly Reports, Ramanujan derived (2.8) by a different method [1, p. 322].)
Putting this evaluation in (2.7), we readily deduce (2.2). If we equate imaginary parts
in (2.6), we deduce that

0 =

∫ ∞
0

π2 sin(nx) + 2π cos(nx) log x

x2 + 1
dx,

from which the identity (2.1) follows. �

3. A Second Approach to the Entry at the Top of Page 391

Theorem 3.1. For s ∈ (−1, 2) and n ≥ 0,

π

2
e−n =

∫ ∞
0

cos(nx− πs/2)

x2 + 1
xsdx. (3.1)

Before indicating a proof of Theorem 3.1, let us see how the integral (3.1) implies
Ramanujan’s integral relations (2.1) and (2.2). Essentially, all we have to do is to take
derivatives of (3.1) with respect to s (and interchange the order of differentiation and
integration); then, upon setting s = 0, we deduce (2.1) and (2.2).

First, note that upon setting s = 0 in (3.1), we obtain (2.8). On the other hand,
taking a derivative of (3.1) with respect to s, and then setting s = 0, we find that

0 =

∫ ∞
0

cos(nx)

x2 + 1
log x dx+

π

2

∫ ∞
0

sin(nx)

x2 + 1
dx, (3.2)
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which is the formula (2.1) that Ramanujan recorded on page 391. Similarly, taking
two derivatives of (3.1) and then putting s = 0, we arrive at

0 =

∫ ∞
0

cos(nx)

x2 + 1
log2 x dx+ π

∫ ∞
0

sin(nx)

x2 + 1
log x dx− π2

4

∫ ∞
0

cos(nx)

x2 + 1
dx,

which, using (2.8), simplifies to

π3

8
e−n =

∫ ∞
0

cos(nx)

x2 + 1
log2 x dx+ π

∫ ∞
0

sin(nx)

x2 + 1
log x dx. (3.3)

Note that this is Ramanujan’s previously unintelligible formula (2.2). If we likewise
take m derivatives before setting s = 0, we obtain the following general set of relations
connecting the integrals

Im :=

∫ ∞
0

cos(nx)

x2 + 1
logm x dx, Jm :=

∫ ∞
0

sin(nx)

x2 + 1
logm x dx.

Corollary 3.2. For m ≥ 1,

0 =
m∑
k=0

(
m

k

)(π
2

)k
(−1)[k/2]

{
Im−k, if k is even,
Jm−k, if k is odd

}
.

We now provide a proof of Theorem 3.1.

Proof. In analogy with our previous proof, we integrate

fs(z) :=
einzzs

z2 + 1

over the contour CR,ε and let ε → 0 and R → ∞. Here, zs = es log z with −1
2
π <

arg z ≤ 3
2
π, as above. By the residue theorem,∫

CR,ε

fs(z)dz = 2πi
e−neπis/2

2i
= πe−neπis/2. (3.4)

Letting ε→ 0 and R→∞, and using bounds for the integrand on the semi-circles as
we did above, we deduce that

lim
R→∞
ε→0

∫
CR,ε

fs(z)dz =

∫ ∞
−∞

einxxs

x2 + 1
dx =

∫ ∞
0

e−inxxseπis

x2 + 1
dx+

∫ ∞
0

einxxs

x2 + 1
dx. (3.5)

Combining (3.4) and (3.5), we find that

πe−neπis/2 =

∫ ∞
0

{einx + e−inxeπis} xs

x2 + 1
dx. (3.6)

We then divide both sides of (3.6) by 2eπis/2 to obtain (3.1). Note that the integrals
are absolutely convergent for s ∈ (−1, 1). By Dirichlet’s test, (3.6) holds for s ∈
(−1, 2). �

Replacing s with s+ 1 in (3.1), we obtain the following companion integral.
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Corollary 3.3. For s ∈ (−2, 1) and n ≥ 0,

π

2
e−n =

∫ ∞
0

x sin(nx− πs/2)

x2 + 1
xsdx. (3.7)

Example 3.4. Setting s = 0 in (3.7), we find that

π

2
e−n =

∫ ∞
0

x sin(nx)

x2 + 1
dx, (3.8)

which is well-known. After taking one derivative with respect to s in (3.7) and setting
s = 0, we similarly find that

0 =

∫ ∞
0

x sin(nx)

x2 + 1
log x dx− π

2

∫ ∞
0

x cos(nx)

x2 + 1
dx, (3.9)

which may be compared with Ramanujan’s formula (2.1). As a second example, after
taking two derivatives of (3.7) with respect to s, setting s = 0, and using (3.8), we
arrive at the identity

π3

8
e−n =

∫ ∞
0

x sin(nx)

x2 + 1
log2 x dx− π

∫ ∞
0

x cos(nx)

x2 + 1
log x dx. (3.10)

�

We offer a few additional remarks before generalizing our ideas in the next section.
Equating real parts in the identity (3.6) from the proof of Theorem 3.1, we find that

πe−n cos(πs/2) =

∫ ∞
0

{cos(nx)(1 + cos(πs)) + sin(nx) sin(πs)} xs

x2 + 1
dx. (3.11)

Setting s = 0 in (3.11), we again obtain (2.8). On the other hand, note that[
d

ds
{cos(nx)(1 + cos(πs)) + sin(nx) sin(πs)}

]
s=0

= π sin(nx).

Hence, taking a derivative of (3.11) with respect to s, and then setting s = 0, we find
that

0 = π

∫ ∞
0

sin(nx)

x2 + 1
dx+ 2

∫ ∞
0

cos(nx)

x2 + 1
log x dx,

which is the formula (2.1) that Ramanujan recorded on page 391. Similarly, taking
two derivatives of (3.11) and letting s = 0, we deduce that

−π
3

4
e−n = −π2

∫ ∞
0

cos(nx)

x2 + 1
dx+ 2π

∫ ∞
0

sin(nx)

x2 + 1
log x dx+ 2

∫ ∞
0

cos(nx)

x2 + 1
log2 x dx,

which, using (2.8), simplifies to

π3

8
e−n = π

∫ ∞
0

sin(nx)

x2 + 1
log x dx+

∫ ∞
0

cos(nx)

x2 + 1
log2 x dx

which is the formula (2.2) arising from Ramanujan’s unintelligible remark in the initial
edition of [5].
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The integral (3.11) has the companion

πe−n sin(πs/2) =

∫ ∞
0

{cos(nx) sin(πs) + sin(nx)(1− cos(πs))} xs

x2 + 1
dx, (3.12)

which is obtained by equating imaginary parts in (3.6). However, taking derivatives
of (3.12) with respect to s, and then setting s = 0, does not generate new identities.
Instead, we recover precisely the previous results. For instance, taking a derivative of
(3.12) with respect to s, and then setting s = 0, we again deduce (2.8). Taking two
derivatives of (3.12) with respect to s, and then setting s = 0, we obtain

0 = π2

∫ ∞
0

sin(nx)

x2 + 1
dx+ 2π

∫ ∞
0

cos(nx)

x2 + 1
log x dx,

which is again Ramanujan’s formula (2.1).

4. General Theorems

The phenomenon observed by Ramanujan in (1.2) can be generalized by replacing the
rational function 1/(z2+1) by a general rational function f(z) in which the denominator
has degree at least one greater than the degree of the numerator. We shall also assume
that f(z) does not have any poles on the real axis. We could prove a theorem allowing
for poles on the real axis, but in such instances we would need to consider the principal
values of the resulting integrals on the real axis. In our arguments above, we used the
fact that 1/(z2 + 1) is an even function. For our general theorem, we require that f(z)
be either even or odd. For brevity, we let Res(F (z); z0) denote the residue of a function
F (z) at a pole z0. As above, we define a branch of log z by −1

2
π < θ = arg z ≤ 3

2
π.

For a rational function f(z) as prescribed above and each nonnegative integer m,
define

Im :=

∫ ∞
0

f(x) cosx logm x dx and Jm :=

∫ ∞
0

f(x) sinx logm x dx. (4.1)

Theorem 4.1. Let f(z) denote a rational function in z, as described above, and let
Im and Jm be defined by (4.1). Let

S := 2πi
∑
U

Res(eizf(z) logm z, zj), (4.2)

where the sum is over all poles zj of eizf(z) logm z lying in the upper half-plane U .
Suppose that f(z) is even. Then

S =
m∑
k=0

(
m

k

)
(iπ)m−k(Ik − iJk) + (Im + iJm). (4.3)

Suppose that f(z) is odd. Then

S = −
m∑
k=0

(
m

k

)
(iπ)m−k(Ik − iJk) + (Im + iJm). (4.4)
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Observe that (4.3) and (4.4) are recurrence relations that enable us to successively
calculate Im and Jm. With each succeeding value of m, we see that two previously
non-appearing integrals arise. If f(z) is even, then these integrals are Im and Jm−1,
while if f(z) is odd, these integrals are Jm and Im−1. The previously non-appearing
integrals appear in either the real part or the imaginary part of the right-hand sides
of (4.3) and (4.4), but not both real and imaginary parts. This fact therefore does not
enable us to explicitly determine either of the two integrals. We must be satisfied with
obtaining recurrence relations with increasingly more terms.

Proof. We commence as in the proof of Theorem 2.1. Let CR,ε denote the positively
oriented contour consisting of the semi-circle CR given by z = Reiθ, 0 ≤ θ ≤ π,
[−R,−ε], the semi-circle Cε given by z = εeiθ, π ≥ θ ≥ 0, and [ε, R], where 0 < ε < d,
where d is the smallest modulus of the poles of f(z) in U . We also choose R larger
than the moduli of all the poles of f(z) in U . By the residue theorem,∫

CR,ε

eizf(z) logm z dz = S, (4.5)

where S is defined in (4.2).
We next directly evaluate the integral on the left-hand side of (4.5). As in the proof

of Theorem 2.1, we can easily show that∫
Cε

eizf(z) logm z dz = o(1), (4.6)

as ε tends to 0. Secondly, we estimate the integral over CR. By hypothesis, there exist a
positive constant A and a positive number R0, such that for R ≥ R0, |f(Reiθ)| ≤ A/R.
Hence, for R ≥ R0,∣∣∣∣∫

CR

eizf(z) logm z dz

∣∣∣∣ =

∣∣∣∣∫ π

0

eiRe
iθ

f(Reiθ) logm(Reiθ)iReiθdθ

∣∣∣∣
≤
∫ π

0

e−R sin θ|f(Reiθ)|(logR + π)mR dθ

≤ A(logR + π)m

(∫ π/2

0

+

∫ π

π/2

)
e−R sin θdθ. (4.7)

Since sin θ ≥ 2θ/π, 0 ≤ θ ≤ π/2, upon replacing θ by π − θ, we find that∫ π

π/2

e−R sin θdθ =

∫ π/2

0

e−R sin θdθ ≤
∫ π/2

0

e−2Rθ/πdθ =
π

2R

(
1− e−R

)
. (4.8)

The bound (4.8) also holds for the first integral on the far right-hand side of (4.7).
Hence, from (4.7),∣∣∣∣∫

CR

eizf(z) logm z dz

∣∣∣∣ ≤ A(logR + π)m
π

R

(
1− e−R

)
= o(1), (4.9)

as R tends to infinity.
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Hence, so far, by (4.5), (4.6), and (4.9), we have shown that

S =

∫ 0

−∞
eixf(x)(log |x|+ iπ)mdx+

∫ ∞
0

eixf(x) logm x dx

=

∫ ∞
0

{
e−ixf(−x)(log x+ iπ)m + eixf(x) logm x

}
dx. (4.10)

Suppose first that f(x) is even. Then (4.10) takes the shape

S =

∫ ∞
0

f(x)
{
e−ix(log x+ iπ)m + eix logm x

}
dx

=

∫ ∞
0

f(x)

{
e−ix

m∑
k=0

(
m

k

)
logk x(iπ)m−k + eix logm x

}
dx

=
m∑
k=0

(
m

k

)
(iπ)m−k(Ik − iJk) + (Im + iJm), (4.11)

which establishes (4.3). Secondly, suppose that f(z) is odd. Then, (4.10) takes the
form

S =

∫ ∞
0

f(x)
{
−e−ix(log x+ iπ)m + eix logm x

}
dx

=

∫ ∞
0

f(x)

{
−e−ix

m∑
k=0

(
m

k

)
logk x(iπ)m−k + eix logm x

}
dx

= −
m∑
k=0

(
m

k

)
(iπ)m−k(Ik − iJk) + (Im + iJm), (4.12)

from which (4.4) follows. �

Example 4.2. Let f(z) = z/(z2 + 1). Then

2πiRes

(
eizz logm z

z2 + 1
, i

)
=
πi

e

(
iπ

2

)m
, (4.13)

and so we are led by (4.4) to the recurrence relation

πi

e

(
iπ

2

)m
= −

m∑
k=0

(
m

k

)
(iπ)m−k(Ik − iJk) + (Im + iJm), (4.14)

where

Im :=

∫ ∞
0

x cosx logm x

x2 + 1
dx and Jm :=

∫ ∞
0

x sinx logm x

x2 + 1
dx.

(In the sequel, it is understood that we are assuming that n = 1 in Theorem 2.1 and
in all our deliberations of the two preceding sections.) If m = 0, (4.14) reduces to

J0 =
π

2e
, (4.15)
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which is (2.8). After simplification, if m = 1, (4.14) yields

−π
2

2e
= −iπI0 − πJ0 + 2iJ1. (4.16)

If we equate real parts in (4.16), we once again deduce (4.15). If we equate imaginary
parts in (4.16), we find that

J1 −
π

2
I0 = 0, (4.17)

which is identical with (3.9). Setting m = 2 in (4.14), we find that

−iπ
3

4e
= π2(I0 − iJ0)− 2iπ(I1 − iJ1) + 2iJ2. (4.18)

Equating real parts on both sides of (4.18), we once again deduce (4.17). If we equate
imaginary parts in (4.18) and employ (4.15), we arrive at

J2 − πI1 =
π3

8e
, (4.19)

which is the same as (3.10). Lastly, we set m = 3 in (4.14) to find that

π4

8e
= iπ3(I0 − iJ0) + 3π2(I1 − iJ1)− 3iπ(I2 − iJ2) + 2iJ3. (4.20)

If we equate real parts on both sides of (4.20) and simplify, we deduce (4.19) once
again. On the other hand, when we equate imaginary parts on both sides of (4.20), we
deduce that

2J3 − 3πI2 − 3π2J1 + π3I0 = 0. (4.21)

A slight simplification of (4.21) can be rendered with the use of (4.17). �

We can replace the rational function 1/(x2+1) in Theorem 3.1 by other even rational
functions f(x) to obtain the following generalization of Theorem 3.1. Its proof is in
the same spirit as that of Theorem 4.1.

Theorem 4.3. Suppose that f(z) is an even rational function with no real poles and
with the degree of the denominator exceeding the degree of the numerator by at least 2.
Then,

πi

eπis/2

∑
U

Res(einzf(z)zs, zj) =

∫ ∞
0

cos(nx− πs/2)f(x)xsdx,

where the sum is over all poles zj of f(z) lying in the upper half-plane U .

Note that, as we did for (3.7), we can replace s with s+1 in Theorem 4.3 to obtain a
corresponding result for odd rational functions xf(x). This is illustrated in Example 4.7
below.

As an application, we derive from Theorem 4.3 the following explicit integral evalu-
ation, which reduces to Theorem 3.1 when r = 0.

Theorem 4.4. Let r ≥ 0 be an integer. For s ∈ (−1, 2(r + 1)) and n ≥ 0,∫ ∞
0

cos(nx− πs/2)

(x2 + 1)r+1
xsdx =

π

2
e−n

r∑
k=0

1

2r+k

(
r + k

k

) r−k∑
j=0

(−1)j
(
s

j

)
nr−k−j

(r − k − j)!
.
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Proof. Setting f(z) = 1/(z2 + 1)r in Theorem 4.3, we see that we need to calculate the
residue

Res

(
einzzs

(z2 + 1)r+1
, i

)
= Res

(
α(z)

(z − i)r+1
, i

)
,

where

α(z) =
einzzs

(z + i)r+1

is analytic in a neighborhood of z = i. Equivalently, we calculate the coefficient of xr

in the Taylor expansion of α(x+ i) around x = 0. Using the binomial series

1

(x+ a)r+1
=
∑
k≥0

(−1)k
(
r + k

k

)
xka−r−k−1

with a = 2i, we find that

α(x+ i) = e−n
einx(x+ i)s

(x+ 2i)r+1

= e−n
∑
k≥0

(−1)k
(
r + k

k

)
xk(2i)−r−k−1

∑
j≥0

(
s

j

)
xjis−j

∑
l≥0

(inx)l

l!
.

Extracting the coefficient of xr, we conclude that

Res

(
einzzs

(z2 + 1)r+1
, i

)
=

e−n

(2i)r+1

r∑
k=0

(−1)k

(2i)k

(
r + k

k

) r−k∑
j=0

(
s

j

)
is−j

(in)r−k−j

(r − k − j)!

=
e−neπis/2

2i

r∑
k=0

1

2r+k

(
r + k

k

) r−k∑
j=0

(−1)j
(
s

j

)
nr−k−j

(r − k − j)!
.

Theorem 4.4 now follows from Theorem 4.3. �

Example 4.5. In particular, in the case s = 0,∫ ∞
0

cos(nx)

(x2 + 1)r+1
dx =

π

2
e−n

r∑
k=0

1

2r+k

(
r + k

k

)
nr−k

(r − k)!
. (4.22)

We note that, more generally, this integral can be expressed in terms of the modified
Bessel function Kr+1/2(z) of order r + 1/2. Namely, we have [3, formula 3.773, no. 6]∫ ∞

0

cos(nx)

(x2 + 1)r+1
dx =

(n
2

)r+1/2
√
π

Γ(r + 1)
Kr+1/2(n). (4.23)

When r ≥ 0 is an integer, the Bessel function Kr+1/2(z) is elementary and the right-
hand side of (4.23) evaluates to the right-hand side of (4.22). �

On the other hand, taking a derivative with respect to s before setting s = 0, and
observing that, for j ≥ 1, [

d

ds

(
s

j

)]
s=0

=
(−1)j−1

j
,

we arrive at the following generalization of Ramanujan’s formula (3.2).
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Corollary 4.6. We have∫ ∞
0

cos(nx)

(x2 + 1)r+1
log x dx+

π

2

∫ ∞
0

sin(nx)

(x2 + 1)r+1
dx

= −π
2
e−n

r∑
k=0

1

2r+k

(
r + k

k

) r−k∑
j=1

1

j

nr−k−j

(r − k − j)!
.

We leave it to the interested reader to make explicit the corresponding generalization
of (3.3).

Example 4.7. As a direct extension of (3.7), replacing s with s+1 in Theorem 4.4, we
obtain the following companion integral. For integers r ≥ 0, and any s ∈ (−2, 2r + 1)
and n ≥ 0,∫ ∞

0

x sin(nx− πs/2)

(x2 + 1)r+1
xsdx =

π

2
e−n

r∑
k=0

1

2r+k

(
r + k

k

) r−k∑
j=0

(−1)j
(
s+ 1

j

)
nr−k−j

(r − k − j)!
.

In particular, setting s = 0, we find that∫ ∞
0

x sin(nx)

(x2 + 1)r+1
dx =

π

2
e−n

r∑
k=0

1

2r+k

(
r + k

k

){
nr−k

(r − k)!
− nr−k−1

(r − k − 1)!

}
, (4.24)

while taking a derivative with respect to s before setting s = 0 and observing that, for
j ≥ 2, [

d

ds

(
s+ 1

j

)]
s=0

=
(−1)j

j(j − 1)
,

we find that∫ ∞
0

x sin(nx)

(x2 + 1)r+1
log x dx− π

2

∫ ∞
0

x cos(nx)

(x2 + 1)r+1
dx

=
π

2
e−n

r∑
k=0

1

2r+k

(
r + k

k

)[
− nr−k−1

(r − k − 1)!
+

r−k∑
j=2

1

j(j − 1)

nr−k−j

(r − k − j)!

]

=
π

2
e−n

r∑
k=0

1

2r+k

(
r + k

k

) r−k∑
j=2

1

j(j − 1)

nr−k−j

(r − k − j)!

+

∫ ∞
0

x sin(nx)

(x2 + 1)r+1
dx−

∫ ∞
0

cos(nx)

(x2 + 1)r+1
dx,

upon the employment of (4.22) and (4.24). �
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