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Random walks in the plane

We study random walks in the
plane consisting of n steps.
Each step is of length 1 and is
taken in a randomly chosen
direction.

We are interested in the
distance traveled in n steps.

For instance, how large is this
distance on average?
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Long walks

Asked by Karl Pearson in Nature in 1905

For long walks, the probability density is

approximately
2x

n
e−x

2/n

For instance, for n = 200:
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K. Pearson. “The random walk.” Nature, 72, 1905.

Lord Rayleigh. “The problem of the random walk.” Nature, 72, 1905.
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Densities
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Moments

Fact from probability theory: the distribution of the distance is
determined by its moments.

Represent the kth step by the complex number e2πixk .
The sth moment of the distance after n steps is:

Wn(s) :=

∫
[0,1]n

∣∣∣∣ n∑
k=1

e2πxki
∣∣∣∣sdx

In particular, Wn(1) is the average distance after n steps.

This is hard to evaluate numerically to high precision. For instance,
Monte-Carlo integration gives approximations with an asymptotic
error of O(1/

√
N) where N is the number of sample points.
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Moments

The sth moment of the distance after n steps:

Wn(s) :=

∫
[0,1]n

∣∣∣∣ n∑
k=1

e2πxki
∣∣∣∣sdx

n s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

2 1.273 2.000 3.395 6.000 10.87 20.00 37.25
3 1.575 3.000 6.452 15.00 36.71 93.00 241.5
4 1.799 4.000 10.12 28.00 82.65 256.0 822.3
5 2.008 5.000 14.29 45.00 152.3 545.0 2037.
6 2.194 6.000 18.91 66.00 248.8 996.0 4186.

W2(1) =
4

π
W3(1) = 1.57459723755189 . . . = ?

Armin Straub Random walks in the plane



Introduction Combinatorics Recursions W3(1) A Bessel Integral Outro

Moments

The sth moment of the distance after n steps:

Wn(s) :=

∫
[0,1]n

∣∣∣∣ n∑
k=1

e2πxki
∣∣∣∣sdx

n s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

2 1.273 2.000 3.395 6.000 10.87 20.00 37.25
3 1.575 3.000 6.452 15.00 36.71 93.00 241.5
4 1.799 4.000 10.12 28.00 82.65 256.0 822.3
5 2.008 5.000 14.29 45.00 152.3 545.0 2037.
6 2.194 6.000 18.91 66.00 248.8 996.0 4186.

W2(1) =
4

π

W3(1) = 1.57459723755189 . . . = ?

Armin Straub Random walks in the plane



Introduction Combinatorics Recursions W3(1) A Bessel Integral Outro

Moments

The sth moment of the distance after n steps:

Wn(s) :=

∫
[0,1]n

∣∣∣∣ n∑
k=1

e2πxki
∣∣∣∣sdx

n s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

2 1.273 2.000 3.395 6.000 10.87 20.00 37.25
3 1.575 3.000 6.452 15.00 36.71 93.00 241.5
4 1.799 4.000 10.12 28.00 82.65 256.0 822.3
5 2.008 5.000 14.29 45.00 152.3 545.0 2037.
6 2.194 6.000 18.91 66.00 248.8 996.0 4186.

W2(1) =
4

π
W3(1) = 1.57459723755189 . . . = ?

Armin Straub Random walks in the plane



Introduction Combinatorics Recursions W3(1) A Bessel Integral Outro

Moments

The sth moment of the distance after n steps:

Wn(s) :=

∫
[0,1]n

∣∣∣∣ n∑
k=1

e2πxki
∣∣∣∣sdx

n s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

2 1.273 2.000 3.395 6.000 10.87 20.00 37.25
3 1.575 3.000 6.452 15.00 36.71 93.00 241.5
4 1.799 4.000 10.12 28.00 82.65 256.0 822.3
5 2.008 5.000 14.29 45.00 152.3 545.0 2037.
6 2.194 6.000 18.91 66.00 248.8 996.0 4186.

W2(1) =
4

π
W3(1) = 1.57459723755189 . . . = ?

Armin Straub Random walks in the plane



Introduction Combinatorics Recursions W3(1) A Bessel Integral Outro

Even moments

n s = 2 s = 4 s = 6 s = 8 s = 10 Sloane’s

2 2 6 20 70 252 A000984

3 3 15 93 639 4653 A002893

4 4 28 256 2716 31504 A002895

5 5 45 545 7885 127905
6 6 66 996 18306 384156

Sloane’s, etc.:

W2(2k) =
(
2k
k

)

W3(2k) =
∑k

j=0

(
k
j

)2(2j
j

)
W4(2k) =

∑k
j=0

(
k
j

)2(2j
j

)(2(k−j)
k−j

)
W5(2k) =

∑k
j=0

(
k
j

)2(2(k−j)
k−j

)∑j
`=0

(
j
`

)2(2`
`

)
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Combinatorics

Theorem (Borwein-Nuyens-S-Wan)

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

.

fn(k) := Wn(2k) counts the number of abelian squares: strings xy
of length 2k from an alphabet with n letters such that y is a
permutation of x.

Introduced by Erdős and studied by others.

fn(k) satisfies recurrences and convolutions.

L. B. Richmond and J. Shallit. “Counting abelian squares.” The
Electronic Journal of Combinatorics, 16, 2009.

P. Barrucand. “Sur la somme des puissances des coefficients
multinomiaux et les puissances successives d’une fonction de Bessel.”
C. R. Acad. Sci. Paris, 258, 5318–5320, 1964.
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Functional Equations for Wn(s)

For integers k > 0,

(k + 2)2W3(2k + 4)− (10k2 + 30k + 23)W3(2k + 2)

+ 9(k + 1)2W3(2k) = 0.

Theorem (Carlson)

If f(z) is analytic for Re (z) > 0, “nice”, and

f(0) = 0, f(1) = 0, f(2) = 0, . . . ,

then f(z) = 0 identically.

Wn(s) is nice!
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Functional Equations for Wn(s)

For integers k > 0,

(k + 2)2W3(2k + 4)− (10k2 + 30k + 23)W3(2k + 2)

+ 9(k + 1)2W3(2k) = 0.

Theorem (Carlson)

If f(z) is analytic for Re (z) > 0, “nice”, and

f(0) = 0, f(1) = 0, f(2) = 0, . . . ,

then f(z) = 0 identically.

Wn(s) is nice!

|f(z)| 6 Aeα|z|, and

|f(iy)| 6 Beβ|y| for β < π
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Functional Equations for Wn(s)

So we get complex functional equations like

(s+4)2W3(s+4)−2(5s2+30s+46)W3(s+2)+9(s+2)2W3(s) = 0.

This gives analytic continuations of Wn(s) to the complex plane,
with poles at certain negative integers.

-6 -4 -2 2
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1
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-6 -4 -2 2
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1
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W3(s) W4(s)
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W3(1) = 1.57459723755189 . . . = ?

Easy: W2(2k) =

(
2k

k

)
. In fact, W2(s) =

(
s

s/2

)
.

Again, from combinatorics:

W3(2k) =
k∑
j=0

(
k

j

)2(2j

j

)
= 3F2

( 1
2 ,−k,−k

1, 1

∣∣∣∣4)︸ ︷︷ ︸
=:V3(2k)

We discovered numerically that V3(1) ≈ 1.574597− .126027i.

Theorem (Borwein-Nuyens-S-Wan)

For integers k we have W3(k) = Re 3F2

( 1
2 ,−

k
2 ,−

k
2

1, 1

∣∣∣∣4).
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W3(1) = 1.57459723755189 . . . = ?

Corollary (Borwein-Nuyens-S-Wan)

W3(1) =
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)

Similar formulas for W3(3),W3(5), . . .
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A generating function

Recall:

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

Therefore:

∞∑
k=0

Wn(2k)
(−x)k

(k!)2
=

∞∑
k=0

∑
a1+···+an=k

(−x)k

(a1!)2 · · · (an!)2

=

( ∞∑
a=0

(−x)a

(a!)2

)n
= J0(2

√
x)n
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Ramanujan’s Master Theorem

Theorem (Ramanujan’s Master Theorem)

For “nice” analytic functions ϕ,∫ ∞
0

xν−1

( ∞∑
k=0

(−1)k

k!
ϕ(k)xk

)
dx = Γ(ν)ϕ(−ν).

Begs to be applied to

∞∑
k=0

Wn(2k)
(−x)k

(k!)2
= J0(2

√
x)n

by setting ϕ(k) =
Wn(2k)

k!
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Ramanujan’s Master Theorem

We find:

Wn(−s) = 21−s
Γ(1− s/2)

Γ(s/2)

∫ ∞
0

xs−1Jn0 (x) dx

A 1-dimensional representation!
Useful for symbolical computations
as well as for high-precision integration

First and more inspiredly found by David Broadhurst
building on work of J.C. Kluyver

David Broadhurst. “Bessel moments, random walks and
Calabi-Yau equations.” Preprint, Nov 2009.

J.C. Kluyver. “A local probability problem.” Nederl. Acad.
Wetensch. Proc., 8, 341–350, 1906.
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A convolution formula

Conjecture

For even n,

Wn(s)
?
=

∞∑
j=0

(
s/2

j

)2

Wn−1(s− 2j).

Inspired by the combinatorial convolution for fn(k) = Wn(2k):

fn+m(k) =
k∑
j=0

(
k

j

)2

fn(j) fm(k − j)

True for even s

True for n = 2

Now proven up to some technical growth conditions
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You will have to look at the papers to find. . .

a hyper-closed form for W4(1),

Meijer-G and hypergeometric expressions for W3(s) and W4(s),

evaluations of derivatives including

W ′3(0) =
1

π
Cl
(π

3

)
, W ′4(0) =

7ζ(3)

2π2
,

expressions for residues at the poles of Wn(s),

. . .
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THANK YOU!
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