Introduction

Random walks in the plane

Armin Straub

Tulane University, New Orleans

August 2, 2010

Joint work with:

U. of Newcastle, AU

Dirk Nuyens

K.U.Leuven, BE

James Wan

U. of Newcastle, AU

- We study random walks in the plane consisting of *n* steps. Each step is of length 1 and is taken in a randomly chosen direction.
- We are interested in the distance traveled in *n* steps.

For instance, how large is this distance on average?

• Asked by Karl Pearson in Nature in 1905

K. Pearson. "The random walk." *Nature*, **72**, 1905.

- Asked by Karl Pearson in Nature in 1905
- For long walks, the probability density is approximately $\frac{2x}{n}e^{-x^2/n}$
- For instance, for n = 200:

20

30

40

K. Pearson. "The random walk." *Nature*, **72**, 1905.

0.05 0.04 0.03 0.02 0.01

] Lord Rayleigh. "The problem of the random walk." *Nature*, **72**, 1905.

10

• Fact from probability theory: the distribution of the distance is determined by its moments.

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
Moments					

- Fact from probability theory: the distribution of the distance is determined by its moments.
- Represent the kth step by the complex number e^{2πixk}. The sth moment of the distance after n steps is:

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \mathrm{d}\boldsymbol{x}$$

In particular, $W_n(1)$ is the average distance after n steps.

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
Moments					

- Fact from probability theory: the distribution of the distance is determined by its moments.
- Represent the kth step by the complex number $e^{2\pi i x_k}$. The sth moment of the distance after n steps is:

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \mathrm{d}\boldsymbol{x}$$

In particular, $W_n(1)$ is the average distance after n steps.

• This is hard to evaluate numerically to high precision. For instance, Monte-Carlo integration gives approximations with an asymptotic error of $O(1/\sqrt{N})$ where N is the number of sample points.

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
Moments					

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \mathrm{d}\boldsymbol{x}$$

n	s = 1	s = 2	s = 3	s = 4	s = 5	s = 6	s = 7
2	1.273	2.000	3.395	6.000	10.87	20.00	37.25
3	1.575	3.000	6.452	15.00	36.71	93.00	241.5
4	1.799	4.000	10.12	28.00	82.65	256.0	822.3
5	2.008	5.000	14.29	45.00	152.3	545.0	2037.
6	2.194	6.000	18.91	66.00	248.8	996.0	4186.

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
Moments					

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \mathrm{d}\boldsymbol{x}$$

n	s = 1	s = 2	s = 3	s = 4	s = 5	s = 6	s = 7
2	/1.273	2.000	3.395	6.000	10.87	20.00	37.25
3	(1.575)	3.000	6.452	15.00	36.71	93.00	241.5
4	1.799	4.000	10.12	28.00	82.65	256.0	822.3
5	2.008	5.000	14.29	45.00	152.3	545.0	2037.
6	2.194	6.000	18.91	66.00	248.8	996.0	4186.

$$\bigvee_{W_2(1)} = \frac{4}{\pi}$$

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
Moments					

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \mathrm{d}\boldsymbol{x}$$

n	s = 1	s = 2	s = 3	s = 4	s = 5	s = 6	s = 7	
2	$^{/1.273}$	2.000	3.395	6.000	10.87	20.00	37.25	
3	(1.575)	3.000	6.452	15.00	36.71	93.00	241.5	
4	1.799	4.000	10.12	28.00	82.65	256.0	822.3	
5	2.008	5.000	14.29	45.00	152.3	545.0	2037.	
6	2.194	$\setminus 6.000$	18.91	66.00	248.8	996.0	4186.	
$W_2($	$1) = \frac{4}{\pi}$	$W_3(1$	$\vec{)} = 1.574$	59723755	5189 =	:?		

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
Moments					

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \mathrm{d}\boldsymbol{x}$$

n	s = 1	s = 2	s = 3	s = 4	s = 5	s = 6	s = 7
2	/1.273	2.000	3.395	6.000	10.87	20.00	37.25
3	(1.575)	3.000	6.452	15.00	36.71	93.00	241.5
4	1.799	4.000	10.12	28.00	82.65	256.0	822.3
5	2.008	5.000	14.29	45.00	152.3	545.0	2037.
6	2.194	$\setminus 6.000$	18.91	66.00	248.8	996.0	4186.
$W_2($	$1) = \frac{4}{\pi}$	$W_3(1$	$\vec{)} = 1.574$	59723755	5189 =	:?	

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
Even mo	ments				

n	s = 2	s = 4	s = 6	s = 8	s = 10	Sloane's
2	2	6	20	70	252	A000984
3	3	15	93	639	4653	A002893
4	4	28	256	2716	31504	A002895
5	5	45	545	7885	127905	
6	6	66	996	18306	384156	

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
Even mo	oments				
n	s-2 s-4	s-6 s	$-8 \mid s - 1$	0 Sloane's	

n	s=2	s = 4	s = 6	s = 8	s = 10	Sloane's
2	2	6	20	70	252	A000984
3	3	15	93	639	4653	A002893
4	4	28	256	2716	31504	A002895
5	5	45	545	7885	127905	
6	6	66	996	18306	384156	

• Sloane's, etc.:

$$W_{2}(2k) = {\binom{2k}{k}}$$
$$W_{3}(2k) = \sum_{j=0}^{k} {\binom{k}{j}^{2} \binom{2j}{j}}$$
$$W_{4}(2k) = \sum_{j=0}^{k} {\binom{k}{j}^{2} \binom{2j}{j} \binom{2(k-j)}{k-j}}$$

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
Even mo	ments				
n	s=2 s=4	s=6 s=	$= 8 \mid s = 1$	0 Sloane's	

n	s=2	s = 4	s = 6	s = 8	s = 10	Sloane s
2	2	6	20	70	252	A000984
3	3	15	93	639	4653	A002893
4	4	28	256	2716	31504	A002895
5	5	45	545	7885	127905	
6	6	66	996	18306	384156	

• Sloane's, etc.:

$$W_{2}(2k) = {\binom{2k}{k}}$$

$$W_{3}(2k) = \sum_{j=0}^{k} {\binom{k}{j}}^{2} {\binom{2j}{j}}$$

$$W_{4}(2k) = \sum_{j=0}^{k} {\binom{k}{j}}^{2} {\binom{2j}{j}} {\binom{2(k-j)}{k-j}}$$

$$W_{5}(2k) = \sum_{j=0}^{k} {\binom{k}{j}}^{2} {\binom{2(k-j)}{k-j}} \sum_{\ell=0}^{j} {\binom{j}{\ell}}^{2} {\binom{2\ell}{\ell}}$$

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
Combinato	orics				

$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} \binom{k}{a_1, \dots, a_n}^2$$

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
Combinato	orics				

$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} \binom{k}{a_1, \dots, a_n}^2$$

• $f_n(k) := W_n(2k)$ counts the number of *abelian squares*: strings xy of length 2k from an alphabet with n letters such that y is a permutation of x.

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
Combinato	orics				

$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} \binom{k}{a_1, \dots, a_n}^2$$

- $f_n(k) := W_n(2k)$ counts the number of *abelian squares*: strings xy of length 2k from an alphabet with n letters such that y is a permutation of x.
- Introduced by Erdős and studied by others.
- L. B. Richmond and J. Shallit. "Counting abelian squares." *The Electronic Journal of Combinatorics*, **16**, 2009.

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
Combinato	prics				

$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} \binom{k}{a_1, \dots, a_n}^2$$

- $f_n(k) := W_n(2k)$ counts the number of *abelian squares*: strings xy of length 2k from an alphabet with n letters such that y is a permutation of x.
- Introduced by Erdős and studied by others.
- $f_n(k)$ satisfies recurrences and convolutions.
- L. B. Richmond and J. Shallit. "Counting abelian squares." *The Electronic Journal of Combinatorics*, **16**, 2009.
 - P. Barrucand. "Sur la somme des puissances des coefficients multinomiaux et les puissances successives d'une fonction de Bessel." *C. R. Acad. Sci. Paris*, **258**, 5318–5320, 1964.

Introduction Combinatorics Recursions $W_3(1)$ A Bessel Integral Outro Functional Equations for $W_n(s)$

$$(k+2)^2 W_3(2k+4) - (10k^2 + 30k + 23)W_3(2k+2) + 9(k+1)^2 W_3(2k) = 0.$$

Introduction Combinatorics Recursions $W_3(1)$ A Bessel Integral Outro Functional Equations for $W_n(s)$

$$(k+2)^2 W_3(2k+4) - (10k^2 + 30k + 23)W_3(2k+2) + 9(k+1)^2 W_3(2k) = 0.$$

Theorem (Carlson)
If
$$f(z)$$
 is analytic for $\operatorname{Re}(z) \ge 0$, "nice", and
 $f(0) = 0$, $f(1) = 0$, $f(2) = 0$, ...,
then $f(z) = 0$ identically.

$$(k+2)^2 W_3(2k+4) - (10k^2 + 30k + 23)W_3(2k+2) + 9(k+1)^2 W_3(2k) = 0.$$

$$(k+2)^2 W_3(2k+4) - (10k^2 + 30k + 23)W_3(2k+2) + 9(k+1)^2 W_3(2k) = 0.$$

• So we get complex functional equations like

$$(s+4)^2 W_3(s+4) - 2(5s^2 + 30s + 46) W_3(s+2) + 9(s+2)^2 W_3(s) = 0.$$

• So we get complex functional equations like

$$(s+4)^2W_3(s+4) - 2(5s^2+30s+46)W_3(s+2) + 9(s+2)^2W_3(s) = 0.$$

• This gives analytic continuations of $W_n(s)$ to the complex plane, with poles at certain negative integers.

• Easy:
$$W_2(2k) = \binom{2k}{k}$$
. In fact, $W_2(s) = \binom{s}{s/2}$.

• Easy:
$$W_2(2k) = \binom{2k}{k}$$
. In fact, $W_2(s) = \binom{s}{s/2}$.

• Again, from combinatorics:

$$W_{3}(2k) = \sum_{j=0}^{k} {\binom{k}{j}}^{2} {\binom{2j}{j}} = \underbrace{{}_{3}F_{2}\left(\begin{array}{c} \frac{1}{2}, -k, -k \\ 1, 1 \end{array} \middle| 4\right)}_{=:V_{3}(2k)}$$

• Easy:
$$W_2(2k) = \binom{2k}{k}$$
. In fact, $W_2(s) = \binom{s}{s/2}$.

• Again, from combinatorics:

$$W_{3}(2k) = \sum_{j=0}^{k} {\binom{k}{j}}^{2} {\binom{2j}{j}} = \underbrace{{}_{3}F_{2} \left(\begin{array}{c} \frac{1}{2}, -k, -k \\ 1, 1 \end{array} \right| 4}_{=:V_{3}(2k)}$$

• We discovered numerically that $V_3(1) \approx 1.574597 - .126027i$.

• Easy:
$$W_2(2k) = \binom{2k}{k}$$
. In fact, $W_2(s) = \binom{s}{s/2}$.

• Again, from combinatorics:

$$W_{3}(2k) = \sum_{j=0}^{k} \binom{k}{j}^{2} \binom{2j}{j} = \underbrace{{}_{3}F_{2}\left(\begin{array}{c}\frac{1}{2}, -k, -k \\ 1, 1\end{array}\right|_{4}\right)}_{=:V_{3}(2k)}$$

• We discovered numerically that $V_3(1) \approx 1.574597 - .126027i$.

Theorem (Borwein-Nuyens-S-Wan)

For integers k we have
$$W_3(k) = \text{Re }_3F_2\begin{pmatrix} \frac{1}{2}, -\frac{k}{2}, -\frac{k}{2} \\ 1, 1 \end{vmatrix} 4$$
.

Corollary (Borwein-Nuyens-S-Wan)

$$W_3(1) = \frac{3}{16} \frac{2^{1/3}}{\pi^4} \Gamma^6\left(\frac{1}{3}\right) + \frac{27}{4} \frac{2^{2/3}}{\pi^4} \Gamma^6\left(\frac{2}{3}\right)$$

• Similar formulas for $W_3(3), W_3(5), \ldots$

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
A generat	ing function				

• Recall:

$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} \binom{k}{a_1, \dots, a_n}^2$$

• Recall:

$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} \binom{k}{a_1, \dots, a_n}^2$$

• Therefore:

$$\sum_{k=0}^{\infty} W_n(2k) \frac{(-x)^k}{(k!)^2} = \sum_{k=0}^{\infty} \sum_{a_1 + \dots + a_n = k} \frac{(-x)^k}{(a_1!)^2 \cdots (a_n!)^2}$$
$$= \left(\sum_{a=0}^{\infty} \frac{(-x)^a}{(a!)^2}\right)^n = J_0(2\sqrt{x})^n$$

IntroductionCombinatoricsRecursionsW3(1)A Bessel IntegralOutroRamanujan's Master Theorem

Theorem (Ramanujan's Master Theorem) For "nice" analytic functions φ ,

$$\int_0^\infty x^{\nu-1} \left(\sum_{k=0}^\infty \frac{(-1)^k}{k!} \varphi(k) x^k \right) \, \mathrm{d}x = \Gamma(\nu) \varphi(-\nu).$$

IntroductionCombinatoricsRecursionsW3(1)A Bessel IntegralOutroRamanujan's Master Theorem

Theorem (Ramanujan's Master Theorem) For "nice" analytic functions φ ,

$$\int_0^\infty x^{\nu-1} \left(\sum_{k=0}^\infty \frac{(-1)^k}{k!} \varphi(k) x^k \right) \, \mathrm{d}x = \Gamma(\nu) \varphi(-\nu).$$

• Begs to be applied to

$$\sum_{k=0}^\infty W_n(2k) \frac{(-x)^k}{(k!)^2} = J_0(2\sqrt{x})^n$$
 by setting $\varphi(k) = \frac{W_n(2k)}{k!}$

IntroductionCombinatoricsRecursionsW3(1)A Bessel IntegralOutroRamanujan's Master Theorem

• We find:

$$W_n(-s) = 2^{1-s} \frac{\Gamma(1-s/2)}{\Gamma(s/2)} \int_0^\infty x^{s-1} J_0^n(x) \, \mathrm{d}x$$

• We find:

$$W_n(-s) = 2^{1-s} \frac{\Gamma(1-s/2)}{\Gamma(s/2)} \int_0^\infty x^{s-1} J_0^n(x) \, \mathrm{d}x$$

 A 1-dimensional representation! Useful for symbolical computations as well as for high-precision integration

• We find:

$$W_n(-s) = 2^{1-s} \frac{\Gamma(1-s/2)}{\Gamma(s/2)} \int_0^\infty x^{s-1} J_0^n(x) \, \mathrm{d}x$$

- A 1-dimensional representation!
 Useful for symbolical computations as well as for high-precision integration
- First and more inspiredly found by David Broadhurst building on work of J.C. Kluyver

- David Broadhurst. "Bessel moments, random walks and Calabi-Yau equations." Preprint, Nov 2009.
- J.C. Kluyver. "A local probability problem." *Nederl. Acad. Wetensch. Proc.*, **8**, 341–350, 1906.

IntroductionCombinatoricsRecursions $W_3(1)$ A Bessel IntegralOutroA convolution formula

Conjecture

For even n,

$$W_n(s) \stackrel{?}{=} \sum_{j=0}^{\infty} {\binom{s/2}{j}}^2 W_{n-1}(s-2j).$$

 Introduction
 Combinatorics
 Recursions
 W3(1)
 A Bessel Integral
 Outro

 A convolution formula

Conjecture

For even n,

$$W_n(s) \stackrel{?}{=} \sum_{j=0}^{\infty} {\binom{s/2}{j}}^2 W_{n-1}(s-2j).$$

• Inspired by the combinatorial convolution for $f_n(k) = W_n(2k)$:

$$f_{n+m}(k) = \sum_{j=0}^{k} {\binom{k}{j}}^2 f_n(j) f_m(k-j)$$

 Introduction
 Combinatorics
 Recursions
 W3(1)
 A Bessel Integral
 Outro

 A convolution formula

Conjecture

For even n,

$$W_n(s) \stackrel{?}{=} \sum_{j=0}^{\infty} {\binom{s/2}{j}}^2 W_{n-1}(s-2j).$$

• Inspired by the combinatorial convolution for $f_n(k) = W_n(2k)$:

$$f_{n+m}(k) = \sum_{j=0}^{k} {\binom{k}{j}}^2 f_n(j) f_m(k-j)$$

- True for even s
- True for n=2
- Now proven up to some technical growth conditions

- a hyper-closed form for $W_4(1)$,
- Meijer-G and hypergeometric expressions for $W_3(s)$ and $W_4(s)$,
- evaluations of derivatives including

$$W'_3(0) = \frac{1}{\pi} \operatorname{Cl}\left(\frac{\pi}{3}\right), \quad W'_4(0) = \frac{7\zeta(3)}{2\pi^2},$$

• expressions for residues at the poles of $W_n(s)$,

Introduction	Combinatorics	Recursions	$W_{3}(1)$	A Bessel Integral	Outro
References	;				

- J. Borwein, D. Nuyens, A. Straub, and J. Wan. "Random Walk Integrals." Preprint, Oct 2009.
- J. Borwein, A. Straub, and J. Wan. "Three-Step and Four-Step Random Walk Integrals." Preprint, May 2010.

Both preprints as well as this talk are/will be available from: http://arminstraub.com

THANK YOU!

Special thanks to:

Tewodros Amdeberhan, David Bailey, David Broadhurst, Richard Crandall, Peter Donovan,

Victor Moll, Michael Mossinghoff, Sinai Robins, Bruno Salvy, Wadim Zudilin