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Random walks in the plane

We study random walks in the
plane consisting of n steps. Each
step is of length 1 and is taken
in a randomly chosen direction.

We are interested in the distance
traveled in n steps.

Denote the probability density of
this distance by pn(x).
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History and long walks

Karl Pearson asked for pn(x) in Nature in 1905.
This famous question coined the term random walk.

Asymptotic answer by Lord Rayleigh:

pn(x) ≈ 2x

n
e−x

2/n

For instance, p200(x):
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Densities of short walks

p2
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Classical results on the densities

p2(x) =
2

π
√

4− x2
easy

p3(x) = Re

(√
x

π2
K

(√
(x+ 1)3(3− x)

16x

))
G. J. Bennett

1905

p4(x) = ??

...

pn(x) =

∫ ∞
0

xtJ0(xt)J
n
0 (t) dt J. C. Kluyver

1906

Experimentally, we observed that p4(x) satisfies an ODE.
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The Bessel integral and some difficulties

p4(x) =

∫ ∞
0

xtJ0(xt)J
4
0 (t)︸ ︷︷ ︸

=:f4(x,t)

dt

Creative telescoping finds A, B so that(
A+

d

dt
·B
)
· f4(x, t) = 0

Switching orders:

A ·
∫ T

0
f4(x, t)dt =

∫ T

0
A · f4(x, t)dt

= −B · f4(x, T )

But for T =∞ the order can’t be changed,
and the RHS does not converge
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2 , t)
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2 , t)
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Moments of random walks

sth moment Wn(s) of the density pn:

Wn(s) =

∫ ∞
0

xspn(x) dx =

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx

Combinatorial evaluation (Borwein-Nuyens-S-Wan, 2010)

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

Inevitable recursions K · f(k) = f(k + 1)[
(k + 2)2K2 − (10k2 + 30k + 23)K + 9(k + 1)2

]
·W3(2k) = 0[

(k + 2)3K2 − (2k + 3)(10k2 + 30k + 24)K + 64(k + 1)3
]
·W4(2k) = 0

Via Carlson’s Theorem these become functional equations
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Crashcourse on the Mellin transform

Mellin transform F (s) of f(x):

M [f ; s] =

∫ ∞
0

xs−1f(x) dx

F (s) is analytic in a strip

Functional properties:

M [xµf(x); s] = F (s+ µ)
M [Dxf(x); s] = −(s− 1)F (s− 1)
M [−θxf(x); s] = sF (s)

Poles of F (s) left of strip =⇒ asymptotics of f(x) at zero
1

(s+m)n+1
(−1)n
n! xm(log x)n

Wn(s− 1) =M [pn; s]

Thus functional equations
for F (s) translate into DEs
for f(x)
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Mellin approach illustrated for p2

W2(2k) =

(
2k

k

)

(s+ 2)W2(s+ 2)− 4(s+ 1)W2(s) = 0[
x2 (θx + 1)− 4θx

]
· p2(x) = 0

Hence: p2(x) =
C√

4− x2

W2(s) =
1

π

1

s+ 1
+O(1) as s→ −1

p2(x) =
1

π
+O(x) as x→ 0+

Taken together: p2(x) =
2

π
√

4− x2

=
∞∑
k=0

1

π24k

(
2k

k

)
x2k

W2(s) has poles at s = −2k − 1

with residue
1

π24k

(
2k

k

)

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8
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p3 in hypergeometric form

W3(s) has simple poles at −2k − 2 with residue

2

π
√

3

W3(2k)

32k

p3(x) =
2x

π
√

3

∞∑
k=0

W3(2k)
(x

3

)2k
for 0 6 x 6 1

W3(2k) =

k∑
j=0

(
k

j

)2(2j

j

)
is an Apéry-like sequence

p3(x) =
2
√

3x

π (3 + x2)
2F1

(
1

3
,
2

3
; 1;

x2
(
9− x2

)2
(3 + x2)3

)

Easy to verify once found
Holds for 0 6 x 6 3

0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4

0.5
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0.7
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2

π
√

3

W3(2k)

32k

p3(x) =
2x

π
√

3

∞∑
k=0

W3(2k)
(x

3

)2k
for 0 6 x 6 1
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k

j

)2(2j

j
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p4 and its asymptotics at zero

W4(s) has double poles at −2k − 2:

W4(s) =
s4,k

(s+ 2k + 2)2
+

r4,k
s+ 2k + 2

+O(1) as s→ −2k − 2

p4(x) =

∞∑
k=0

(r4,k − s4,k log(x)) x2k+1 for small x > 0

s4,k =
3

2π2
W4(2k)

82k
W4(2k) =

k∑
j=0

(
k

j

)2(2j

j

)(
2n− 2j

n− j

)
r4,k known recursively Domb numbers

1 2 3 4

0.1
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Generating function for Domb numbers (Chan-Chan-Liu, 2004; Rogers, 2009)

∞∑
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W4(2k)zk =
1

1− 4z
3F2
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2
3

1, 1

∣∣∣∣ 108z2
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W4(s) =
3

2π2
1

(s+ 2)2
+

9 log 2

2π2
1

s+ 2
+O(1) as s→ −2

p4(x) = − 3

2π2
x log(x) +

9 log 2

2π2
x+O(x3) as x→ 0+
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p4 and its differential equation

[
(s+ 4)3S4 − 4(s+ 3)(5s2 + 30s+ 48)S2 + 64(s+ 2)3

]
·W4(s) = 0

translates into A4 · p4(x) = 0 where A4 is

A4 = x4(θ + 1)3 − 4x2θ(5θ2 + 3) + 64(θ − 1)3

= (x− 4)(x− 2)x3(x+ 2)(x+ 4)D3
x + 6x4

(
x2 − 10

)
D2
x

+ x
(
7x4 − 32x2 + 64

)
Dx +

(
x2 − 8

) (
x2 + 8

)
Care needed!

p4(x) ≈ C
√

4− x as x → 4−. Thus p′′4 is not locally integrable and
does not have a Mellin transform in the classical sense.
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p4 in hypergeometric form

Theorem (Borwein-S-Wan-Zudilin, 2011)

For 2 6 x 6 4, p4(x) =
2

π2

√
16− x2
x

3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16− x2

)3
108x4

)
.

Again, easily (if tediously) provable once found

Quite marvelously, as first observed numerically:

Theorem (Borwein-S-Wan-Zudilin, 2011)

For 0 6 x 6 4, p4(x) =
2

π2

√
16− x2
x

Re 3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16− x2

)3
108x4

)
.
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p4 in hypergeometric form — motivation

y0(z) =
1

1− 4z
3F2

( 1
3 ,

1
2 ,

2
3

1, 1

∣∣∣∣ 108z2

(1− 4z)3

)
is the analytic solution of[

64z2(θ + 1)3 − 2z(2θ + 1)(5θ2 + 5θ + 2) + θ3
]
· y(z) = 0 (DE)

p4(x) = − 3x

4π2
y1

(
x2

64

)
where y1(z) solves (DE) and y1(z)− y0(z) log(z) ∈ zQ[[z]]

As x→ 4 then z = x2

64 →
1
4 and t = 108z2

(1−4z)3 →∞

Basis at ∞ for the hypergeometric equation of 3F2

( 1
3 ,

1
2 ,

2
3

1, 1

∣∣∣∣t):

t−1/33F2

(
1
3 ,

1
3 ,

1
3

2
3 ,

5
6

∣∣∣∣1t
)
, t−1/23F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣1t
)
, t−2/33F2

(
2
3 ,

2
3 ,

2
3

4
3 ,

7
6

∣∣∣∣1t
)
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p4 and its modularity

Theorem (Chan-Zudilin, 2010)

y0

(
−η(2τ)6η(6τ)6

η(τ)6η(3τ)6

)
=

η(τ)4η(3τ)4

η(2τ)2η(6τ)2

η is the Dedekind eta function: q = e2πiτ

η(τ) = q1/24
∞∏
n=1

(1− qn) = q1/24
∞∑

n=−∞
(−1)nqn(3n+1)/2

If f(τ) is a modular form and g(τ) a modular function.
Then the function y(z) defined by y(g(τ)) = f(τ) satisfies a linear DE.

For τ = −1/2 + iy and y > 0:

p4

(
8i
η(2τ)3η(6τ)3

η(τ)3η(3τ)3

)
=

6(2τ + 1)

π
η(τ)η(2τ)η(3τ)η(6τ)

τ =

√
−5/3−1

2 gives p4(1)
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Hypergeometric formulae summarized

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

p2(x)

0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p3(x)

1 2 3 4

0.1

0.2

0.3

0.4

0.5

p4(x)

p2(x) =
2

π
√

4− x2
easy

p3(x) =
2
√

3

π

x

(3 + x2)
2F1

(
1
3 ,

2
3

1

∣∣∣∣x2
(
9− x2

)2
(3 + x2)3

)
classical
with a spin

p4(x) =
2

π2

√
16− x2
x

Re 3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16− x2

)3
108x4

)
new

BSWZ
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General problem

Research problem

Given a linear differential equation automatically find its
“hypergeometric-type” solutions.

Promising work by Mark van Hoeij and his group
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Densities in general

Theorem (Borwein-S-Wan-Zudilin, 2011)

The density pn satisfies a DE of order n− 1.
pn is real analytic except at 0 and the integers n, n− 2, n− 4, . . ..

The second statement relies on an explicit recursion by Verrill (2004) as
well as the combinatorial identity

∑
06m1,...,mj<n/2

mi<mi+1

j∏
i=1

(n− 2mi)
2 =

∑
16α1,...,αj6n
αi6αi+1−2

j∏
i=1

αi(n+ 1− αi).

First proven by Djakov-Mityagin (2004).

Direct combinatorial proof by Zagier.
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p5 — starting startlingly straight

1 2 3 4 5

0.05

0.10

0.15

0.20

0.25

0.30

0.35

“ . . . the graphical construction, however carefully reinvestigated, did not
permit of our considering the curve to be anything but a straight
line. . . Even if it is not absolutely true, it exemplifies the extraordinary power
of such integrals of J products to give extremely close approximations to
such simple forms as horizontal lines.

Karl Pearson, 1906 ”

p5(x) =

∫ ∞
0

xtJ0(xt)J
5
0 (t) dt

p5(x) = 0.32993x+0.0066167x3+0.00026233x5+0.000014119x7+O(x9)
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of such integrals of J products to give extremely close approximations to
such simple forms as horizontal lines.

Karl Pearson, 1906 ”

p5(x) =

∫ ∞
0

xtJ0(xt)J
5
0 (t) dt

p5(x) = 0.32993x+0.0066167x3+0.00026233x5+0.000014119x7+O(x9)
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What we know about p5

W5(s) has simple poles at −2k − 2 with residue r5,k

Hence: p5(x) =

∞∑
k=0

r5,k x
2k+1

Surprising bonus of the modularity of p4

r5,0 = p4(1) =

√
5

40

Γ( 1
15)Γ( 2

15)Γ( 4
15)Γ( 8

15)

π4

r5,1
?
=

13

225
r5,0 −

2

5π4
1

r5,0

Other residues given recursively
p5 solves the DE[
x6(θ + 1)4 − x4(35θ4 + 42θ2 + 3) + x2(259(θ − 1)4 + 104(θ − 1)2)

− (15(θ − 3)(θ − 1))2
]
· p5(x) = 0
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Summary of the ingredients

Combinatorics Complex Analysis Analysis

Number Theory

even moments
difference equations
generating functions

complex moments
functional equations
residues

density functions
differential equations
asymptotics

modularity
Chowla-Selberg formula

Carlson’s Theorem Mellin Transform
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

J. Borwein, A. Straub, J. Wan, W. Zudilin
Densities of short uniform random walks
Canadian Journal of Mathematics — to appear
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