Densities

How far does a drunkard get? Graduate Student Colloquium

Armin Straub

Tulane University, New Orleans

April 12, 2011

Dirk Nuyens

Wadim Zudilin U. of Newcastle, AU

Jon Borwein

U. of Newcastle, AU

K.U.Leuven, BE

James Wan U. of Newcastle, AU

Armin Straub How far does a g

How far does a drunkard get?

IntroductionMomentsCombinatoricsConsequences $W_3(1)$ DensitiesRMTRandom walks in the plane

IntroductionMomentsCombinatoricsConsequences $W_3(1)$ DensitiesRMTRandom walks in the plane

- We study random walks in the plane consisting of *n* steps. Each step is of length 1 and is taken in a randomly chosen direction.
- We are interested in the distance traveled in *n* steps.

For instance, how large is this distance on average?

Introduction Moments Combinatorics Consequences Densities RMT

How the random walk got its name

 Asked by Karl Pearson in Nature in 1905

The Problem of the Random Walk,

CAN any of your readers refer me to a work wherein I should find a solution of the following problem, or failing the knowledge of any existing solution provide me with an original one? I should be extremely grateful for aid in the matter.

A man starts from a point O and walks l yards in a straight line; he then turns through any angle whatever and walks another l yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r + \delta r$ from his starting point, O.

The problem is one of considerable interest, but I have only succeeded in obtaining an integrated solution for two stretches. I think, however, that a solution ought to be found, if only in the form of a series in powers of 1/n. when n is large. KARL PEARSON.

The Gables, East Ilsley, Berks.

K. Pearson. "The random walk." Nature, 72, 1905.

Introduction Moments Combinatorics Consequences Densities RMT

How the random walk got its name

- Asked by Karl Pearson in Nature in 1905
- Asymptotic answer by Lord Rayleigh in the same issue

The Problem of the Random Walk,

CAN any of your readers refer me to a work wherein I should find a solution of the following problem, or failing the knowledge of any existing solution provide me with an original one? I should be extremely grateful for aid in the matter.

A man starts from a point O and walks l yards in a straight line; he then turns through any angle whatever and walks another l yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r + \delta r$ from his starting point, O.

The problem is one of considerable interest, but I have only succeeded in obtaining an integrated solution for two stretches. I think, however, that a solution ought to be found, if only in the form of a series in powers of 1/n, when n is large. KARL PEARSON.

The Gables, East Ilsley, Berks.

K. Pearson. "The random walk." Nature, 72, 1905.

Introduction Moments Combinatorics Consequences $W_3(1)$ Densities RMT How the random walk got its name

- Asked by Karl Pearson in Nature in 1905
- Asymptotic answer by Lord Rayleigh in the same issue

K. Pearson. "The ran

The Problem of the Random Walk,

CAN any of your readers refer me to a work wherein I should find a solution of the following problem, or failing the knowledge of any existing solution provide me with an original one? I should be extremely grateful for aid in the matter.

A man starts from a point O and walks l yards in a straight line; he then turns through any angle whatever and walks another l yards in a second straight line. He repeats this process n times. I require the probability that

and

The Problem of the Random Walk.

This problem, proposed by Prof. Karl Pearson in the avec current number of NATURE, is the same as that of the 'mo composition of *n* iso-periodic vibrations of unit amplitude and of phases distributed at random, considered in '*n*, *Phil. Mag.*, x., p. 73, 1880; xlvii., p. 246, 1890; ("Scientific Papers," i., p. 491, iv., p. 370). If *n* be very great, the probability sought is

Probably methods similar to those employed in the papers referred to would avail for the development of an approximate expression applicable when n is only moderately great. The paper of the paper

Terling Place, July 29.

The lesson of Lord Rayleigh's solution is that in open country the most probable place to find a drunken man who is at all capable of keeping on his feet is somewhere near his starting point! KARL PEARSON.

Armin Straub How far does a drunkard get?

Armin Straub How far does a drunkard get?

Armin Straub How far does a drunkard get?

A drunk man will find his way home, but a drunk bird may get lost forever.

— Shizuo Kakutani

- The moments of a RV X are $E(X),\,E(X^2),\,E(X^3),\,\ldots$
- If X has probability density f(x) then

$$E(X^s) = \int_{-\infty}^{\infty} x^s f(x) \, \mathrm{d}x$$

- The moments of a RV X are E(X), $E(X^2)$, $E(X^3)$, ...
- If X has probability density f(x) then

$$E(X^s) = \int_{-\infty}^{\infty} x^s f(x) \, \mathrm{d}x$$

Fact

No matter how bad f(x), the moments $E(X^s)$ are analytic in s.

Assumption: for instance, f(x) compactly supported

- The moments of a RV X are E(X), $E(X^2)$, $E(X^3)$, ...
- If X has probability density f(x) then

$$E(X^s) = \int_{-\infty}^{\infty} x^s f(x) \, \mathrm{d}x$$

Fact

No matter how bad f(x), the moments $E(X^s)$ are analytic in s.

Assumption: for instance, f(x) compactly supported

•
$$\int_0^\infty x^{s-1} f(x) \, \mathrm{d}x$$
 is called the Mellin transform of f

- Represent the kth step by the complex number $e^{2\pi i x_k}$.
- The distance after n steps is $\left|\sum_{k=1}^{n} e^{2\pi i x_k}\right|$.

- Represent the kth step by the complex number $e^{2\pi i x_k}$.
- The distance after n steps is $\left|\sum_{k=1}^{n} e^{2\pi i x_k}\right|$.
- The sth moment of the distance after n steps is:

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \mathrm{d}\boldsymbol{x}$$

In particular, $W_n(1)$ is the average distance after n steps. • Trivially $W_1(s) = 1$.

• Numerically: $W_2(1) \approx 1.2732395447351626862$

Portal

• Numerically: $W_2(1) \approx 1.2732395447351626862$

The Inverse Symbolic Calculator (ISC) uses a combination of lookup tables and integer relation algorithms in order to associate with a user-defined, truncated decimal expansion (represented as a floatine noint	Maplesoft Water And	The ISC presently accepts either floating point expressions or correct Maple syntax as input. However, for Maple syntax requiring too long for evaluation, a timeout has been implemented.
expression) a closed form representation for the real number.		Visit <u>Jon Borwein's</u> <u>Webpage</u>
1.273	32395447351626862	David Bailey's Webpage
Inverse Calculate		Math Resources Portal

Here are a few fun numbers to try:

• Numerically: $W_2(1) \approx 1.2732395447351626862$

CARMA Homepage

Math Resources Portal

Densities Introduction Moments Combinatorics Consequences RMT Average distance traveled in two steps

• Numerically: $W_2(1) \approx 1.2732395447351626862$

accorda window ricip **U** ~ . http://isc.carma.newcastle.edu.au/advancedCalc B The Inverse Symbolic Drive NSERC CRSNG The ISC presently Manlesoft Calculator (ISC) uses a accepts either MITACS combination of floating point lookup tables and expressions or integer relation correct Maple syntax algorithms in order to as input. However, **ISCO inverse** symbolic calculator associate with a for Maple syntax user-defined. requiring too long for truncated decimal evaluation, a timeout has been expansion Advanced lookup results for 1.2732395447351626862 floating point expression) a closed Transform Report problems with Searched for Description form representation (K=1.2732395447351626862) this site here. for the real number. K*5/6 0610329539459689052-1/3/Pi The lookup tables 2/3/GAM(1/6)/GAM(5/6) include a substantial 1/3/Pi data set compiled by .95492965855137201465<mark>3/Pi</mark> Jon Borwein's 795774715459476678881/2/GAM(1/6)/GAM(5/6) before and during his Webpage cos(Pi/12)/Pi*sin(Pi/12) period as an 1/4/sr(Pi)^2 employee at CECM. David Bailey's .707355302630645936782/9/Pi Webpage 63661977236758134310<mark>2/Pi</mark> K*5/12 53051647697298445258 1/6/Pi CARMA Homepage 1/3/GAM(1/6)/GAM(5/6) 477464829275686007323/2/Pi Math Resources sr(3)/GAM(1/3)/GAM(2/3) Portal

3/2/Pi

• The average distance in two steps:

$$W_2(1) = \int_0^1 \int_0^1 \left| e^{2\pi i x} + e^{2\pi i y} \right| \mathrm{d}x \mathrm{d}y = ?$$

• The average distance in two steps:

$$W_2(1) = \int_0^1 \int_0^1 \left| e^{2\pi i x} + e^{2\pi i y} \right| \mathrm{d}x \mathrm{d}y = ?$$

• Mathematica 7 and Maple 14 think the answer is 0.

• The average distance in two steps:

$$W_2(1) = \int_0^1 \int_0^1 \left| e^{2\pi i x} + e^{2\pi i y} \right| \mathrm{d}x \mathrm{d}y = ?$$

- Mathematica 7 and Maple 14 think the answer is 0.
- There is always a 1-dimensional reduction:

$$W_2(1) = \int_0^1 \left| 1 + e^{2\pi i y} \right| dy = \frac{4}{\pi} \approx 1.27324$$

• The average distance in two steps:

$$W_2(1) = \int_0^1 \int_0^1 \left| e^{2\pi i x} + e^{2\pi i y} \right| \mathrm{d}x \mathrm{d}y = ?$$

- Mathematica 7 and Maple 14 think the answer is 0.
- There is always a 1-dimensional reduction:

$$W_2(1) = \int_0^1 \left| 1 + e^{2\pi i y} \right| dy = \frac{4}{\pi} \approx 1.27324$$

• This is the average length of a random arc on a unit circle.

IntroductionMomentsCombinatoricsConsequences $W_3(1)$ DensitiesRMTThe average distance for 3 and more steps

- $W_n(s) := \int_{[0,1]^n} \left| e^{2\pi i x_1} + \ldots + e^{2\pi i x_n} \right|^s \mathrm{d}\boldsymbol{x}$
- On a desktop:
- $W_3(1) \approx 1.57459723755189365749$ $W_4(1) \approx 1.79909248$ $W_5(1) \approx 2.00816$
- In fact, $W_5(1) \approx 2.0081618$ was the best estimate we could compute directly, notwithstanding the availability of 256 cores at the Lawrence Berkeley National Laboratory.

IntroductionMomentsCombinatoricsConsequences $W_3(1)$ DensitiesRMTThe average distance for 3 and more steps

- $W_n(s) := \int_{[0,1]^n} \left| e^{2\pi i x_1} + \ldots + e^{2\pi i x_n} \right|^s \mathrm{d}\boldsymbol{x}$
- On a desktop:
- $W_3(1) \approx 1.57459723755189365749$ $W_4(1) \approx 1.79909248$ $W_5(1) \approx 2.00816$
- In fact, $W_5(1) \approx 2.0081618$ was the best estimate we could compute directly, notwithstanding the availability of 256 cores at the Lawrence Berkeley National Laboratory.
- Hard to evaluate numerically to high precision. For instance, Monte-Carlo integration gives approximations with an asymptotic error of $O(1/\sqrt{N})$ where N is the number of sample points.

IntroductionMomentsCombinatoricsConsequences $W_3(1)$ DensitiesRMTThe average distance for 3 and more steps

- $W_n(s) := \int_{[0,1]^n} \left| e^{2\pi i x_1} + \ldots + e^{2\pi i x_n} \right|^s \mathrm{d}\boldsymbol{x}$
- On a desktop:
- $W_3(1) \approx 1.57459723755189365749$ $W_4(1) \approx 1.79909248$ $W_5(1) \approx 2.00816$
- In fact, $W_5(1) \approx 2.0081618$ was the best estimate we could compute directly, notwithstanding the availability of 256 cores at the Lawrence Berkeley National Laboratory.
- Hard to evaluate numerically to high precision. For instance, Monte-Carlo integration gives approximations with an asymptotic error of $O(1/\sqrt{N})$ where N is the number of sample points.
- Closed forms as in the case n = 2?

• $W_3(1) = 1.57459723755189365749...$

• $W_3(1) = 1.57459723755189365749...$

Idea

If we suspect that a number x_0 can be written as $x_0 = a_1x_1 + ... a_nx_n$ for other numbers x_i and rational a_i then this can be detected!

• $W_3(1) = 1.57459723755189365749...$

Idea

If we suspect that a number x_0 can be written as $x_0 = a_1x_1 + ... a_nx_n$ for other numbers x_i and rational a_i then this can be detected!

• PSLQ takes numbers $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and tries to find integers $\mathbf{m} = (m_1, m_2, \dots, m_n)$, not all zero, such that

$$\mathbf{x} \cdot \mathbf{m} = m_1 x_1 + \ldots + m_n x_n = 0.$$

The vector \mathbf{m} is called an integer relation for \mathbf{x} . In case that no relation is found, PSLQ provides a lower bound for the norm of any potential integer relation.

In[1]:= << "~/docs/math/mathematica/pslq.m"</pre>

Basic PSLQ implementation by Armin Straub

accompanying the paper "A gentle introduction to PSLQ"

-- Tulane University -- Version 1.2 (2010/12/17)

In[2]:= W2 = 1.2732395447351626861510701069801148962756771659236515899813387524711743810738122807209; W3 = 1.5745972375518936574946921830765196902216661807585191701936930983018311805944543821311;

In[4]:= PSLQ[{W2, 1, 1 / Pi, 1 / Pi^2}]

 $Out[4] = \{1, 0, -4, 0\}$

Introduction	Moments	Combinatorics	Consequences	$W_{3}(1)$	Densities	RMT
Can we g	juess W_3	(1)?				

<pre>In[1]:= << "~/docs/math/mathematica/pslq.m"</pre>]
Basic PSLQ implementation by Armin Straub	P
accompanying the paper "A gentle introduction to PSLQ"	
Tulane University Version 1.2 (2010/12/17)	
In[2]:= W2 = 1.2732395447351626861510701069801148962756771659236515899813387524711743810738122807209; W3 = 1.5745972375518936574946921830765196902216661807585191701936930983018311805944543821311;	
In[4]:= PSLQ[{W2, 1, 1 / Pi, 1 / Pi^2}]]
Out[4]= {1, 0, -4, 0}	7
In[5]:= PSLQ[{W3, 1, 1 / Pi, 1 / Pi^2}]]
PSLQ::lowprec : Precision too low to continue (155 iterations performed).	Part of
PSLQ::norel : No integer relation was found. The norm of any true integer relation is at least 1.3248876487095543'*^13.	3
Out[5]= {}	7

Introduction	Moments	Combinatorics	Consequences	$W_{3}(1)$	Densities	RMT
Can we g	guess W_3	(1)?				

In[1]:= << "~/docs/mat	h/mathematica/pslq.m"]
Basic PSLQ imp accompanyi Tulane	lementation by Armin Straub ng the paper "A gentle introduction to PSLQ" University Version 1.2 (2010/12/17)	p1
In[2]:= W2 = 1.27323954 W3 = 1.57459723	147351626861510701069801148962756771659236515899813387524711743810738122807209; 175518936574946921830765196902216661807585191701936930983018311805944543821311;	
In[4]:= PSLQ[{W2, 1, 1	/Pi, 1/Pi^2}]]
Out[4]= $\{1, 0, -4, 0\}$]
In[5]:= PSLQ[{W3, 1, 1	/Pi, 1/Pi^2}]]
PSLQ::lowprec : Prec	ision too low to continue (155 iterations performed).	201
PSLQ::norel : No inte	ger relation was found. The norm of any true integer relation is at least 1.3248876487095543`*^13.	M
Out[5]= { }		Pr
In[6]:= PSLQ[N[EulerGa	amma^Range[0, 10], 1000]]]
PSLQ::norel : No inte	ger relation was found. The norm of any true integer relation is at least 3.316965369128081`*^31.	
Out[6]= { }		3

IntroductionMomentsCombinatoricsConsequences $W_3(1)$ DensitiesRMTGetting data: computing some moments

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \mathrm{d}\boldsymbol{x}$$

n	s = 1	s = 2	s = 3	s = 4	s = 5	s = 6	s = 7
2	1.273	2.000	3.395	6.000	10.87	20.00	37.25
3	1.575	3.000	6.452	15.00	36.71	93.00	241.5
4	1.799	4.000	10.12	28.00	82.65	256.0	822.3
5	2.008	5.000	14.29	45.00	152.3	545.0	2037.
6	2.194	6.000	18.91	66.00	248.8	996.0	4186.

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \mathrm{d}\boldsymbol{x}$$

n	s = 1	s = 2	s = 3	s = 4	s = 5	s = 6	s = 7
2	/1.273	2.000	3.395	6.000	10.87	20.00	37.25
3	(1.575)	3.000	6.452	15.00	36.71	93.00	241.5
4	1.799	4.000	10.12	28.00	82.65	256.0	822.3
5	2.008	5.000	14.29	45.00	152.3	545.0	2037.
6	2.194	6.000	18.91	66.00	248.8	996.0	4186.

$$\downarrow W_2(1) = \frac{4}{\pi}$$

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \mathrm{d}\boldsymbol{x}$$

n	s = 1	s = 2	s = 3	s = 4	s = 5	s = 6	s = 7
2	/1.273	2.000	3.395	6.000	10.87	20.00	37.25
3	(1.575)	3.000	6.452	15.00	36.71	93.00	241.5
4	1.799	4.000	10.12	28.00	82.65	256.0	822.3
5	2.008	5.000	14.29	45.00	152.3	545.0	2037.
6	2.194	$\setminus 6.000$	18.91	66.00	248.8	996.0	4186.
	' ↓	· \	I	I		I	I
$W_2($	$1) = \frac{4}{\pi}$	$W_3(1$	$\vec{)} = 1.574$	59723755	5189 <i>=</i>	:?	

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \mathrm{d}\boldsymbol{x}$$

Introduction	Moments	Combinatorics	Consequences	$W_{3}(1)$	Densities	RMT
Even mor	ments					

n	s = 2	s = 4	s = 6	s = 8	s = 10	Sloane's
2	2	6	20	70	252	A000984
3	3	15	93	639	4653	A002893
4	4	28	256	2716	31504	A002895
5	5	45	545	7885	127905	
6	6	66	996	18306	384156	

Introduction	Moments	Combinatorics	Consequences	$W_{3}(1)$	Densities	RMT
Even mor	ments					

n	s = 2	s = 4	s = 6	s = 8	s = 10	Sloane's
2	2	6	20	70	252	A000984
3	3	15	93	639	4653	A002893
4	4	28	256	2716	31504	A002895
5	5	45	545	7885	127905	
6	6	66	996	18306	384156	

• Apparently: $W_n(2) = n$

Introduction	Moments	Combinatorics	Consequences	$W_{3}(1)$	Densities	RMT
Even mor	nents					

n	s = 2	s = 4	s = 6	s = 8	s = 10	Sloane's
2	2	6	20	70	252	A000984
3	3	15	93	639	4653	A002893
4	4	28	256	2716	31504	A002895
5	5	45	545	7885	127905	
6	6	66	996	18306	384156	

- Apparently: $W_n(2) = n$
- Also: $W_n(10) \equiv n \mod 10$

Introduction	Moments	Combinatorics	Consequences	$W_{3}(1)$	Densities	RMT				
The integer sequence database										
		This site is supported by	donations to <u>The OEIS Fou</u>	indation.						
		Intege	r Sequences terms							
		1,4,28,256	•	Search Hints						
		(Greetings from <u>The On-Line Ency</u> e	clopedia of Integer Sequence	<u>es</u> !)						
	Search: seq:1,4	,28,256								
	Displaying 1-2 of	of 2 results found.	reated Formatilonal	bort I data	page 1					
	A064340	Generalized Catalan numbers C(2.2: n).		+20					
	1 1 4	28 256 2704 31168	380608 4840960	63458560 85139	10					
	11635096	576, 161396604928, 2266	669453312, 3216608	32822144,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	46053109	1685376, 66441855533056 53282287616(list: graph: lister:	00, 96498260064403	3456,						
	OFFSET	0,3	miscory, incernacronnacy							
	COMMENTS	See triangle <u>A064879</u> >= 0, also for Derr	with columns m bu ida et al. and Lig	ilt from C(m,m; ggett reference	n), m s.					
	FORMULA	a(n)= ((4^(n-1))/(n-1	l))*sum((m+1)*(m+2)*binomial(2*(n	-2)-m,					
		n-2-m)*((1/2)^(m+1) G f ·(1-3*x*c(4*x))/(), m=0n-2), n >= [1-2*x*c(4*x))^2 =	= 2, a(0) := 1=	: a(1).					
		c(4*x)*(3+c(4*x))/($1+c(4*x))^2 =$							
		(1+5*x+3*c(4*x)*(2*	x)^2)/(1+2*x)^2 wi	(x) = A(x)	g.f. of					
	CROSSREFS	A000108 (Catalan as (C(1. 1. n)).							
	KEYWORD	nonn,easy								
	AUTHOR	Wolfdieter Lang								
		(wolfdieter.lang(AT)physik.uni-karls	ruhe.de), Oct 1	2 2001					
	A002895	Number of 2n-step polygons on	diamond lattice.		+20					
	1.4.28	256 , 2716, 31504, 38	7136. 4951552. 652	18204. 87853662	24.					
		Armin Strau	b How far does	a drunkard get?						

The integer sequence database						
A002895 Number of 2n-step polygons on diamond lattice. +20 (Formerly M3626 N1473)						
 4, 28, 256, 2716, 31504, 387136, 4951552, 65218204, 878536624, 12046924528, 167595457792, 2359613230144, 33557651538688, 481365424895488, 6956365106016256, 101181938814289564, 1480129751586116848 (<u>lity graph litera; history internal format</u>) 						
OFFSET 0,2						
COMMENTS a(n) is the (2n)th moment of the distance from the origin of a 4-step random walk in the plane - Peter M.W. Gill (peter.gill(AT)nott.ac.uk), Mar 03 2004						
 Interferences Indicting triangle (a) for the provided of the provide						
<pre>wan, Handom walk Integrats, 2010. L. B. Richmond, J. Shallit, <u>Counting Abelian Squares</u>, arXiv:0807.5028 [Math.CO]. [From R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Oct 30 2008]</pre>						
<pre>FORMULA Sum_{k=0n} binomial(n, k)^2 binomial(2n-2k, n-k) binomial(2k, k). n^3*a(n) = 2*(2*n-1)*(5*n^2-5*n+2)*a(n-1)-64*(n-1)^3*a(n-2). - Vladeta Jovovic (vladeta(AT)eunet.rs), Jul 16 2004 Sum {n>=0} a(n)*x^n/n!^2 = BesselI(0, 2*sqrt(x))^4</pre>						
Armin Straub How far does a drunkard get?						

Densities

RMT

Introduction

Moments

Combinatorics

Introduction	Moments	Combinatorics	Consequences	$W_{3}(1)$	Densities	RMT		
The integer sequence database								
		This site is supported by d	onations to <u>The OEIS Foundal</u>	ion. Search) <u>Hinta</u>				
(Greetings frc Search Query <u>te Encyclopedia of Integer Sequences</u> !)								
	Search: seq:1,5, Displaying 1-1 of Sort: relevance	45,545,7885 f 1 result found. references number modified crea	ted Format: long short	<u>data</u>	page 1			
	<u>A169714</u> T	he function W_5(2n) (see Borwein	et al. reference for defin	ition).	+20			
	1, 5, 45, offset Links keyword Author	, 545 , 7885 , 127905 (<u>list or</u> 0,2 Jonathan M. Borwein, Di Wan, <u>Random Walk Inte</u> nonn N. J. A. Sloane (njas(<i>i</i>	aph listen histon, internalfo .rk Nuyens, Armin S <u>grals</u> , 2010. T)research.att.com	ormat) traub and James), Apr 17 2010				
					page 1			

Search completed in 0.076 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement.

Last modified March 27 11:55 EDT 2011. Contains 186889 sequences.

Theorem (Borwein-Nuyens-S-Wan)

$$W_n(2k) = \sum_{a_1+\dots+a_n=k} {\binom{k}{a_1,\dots,a_n}}^2.$$

IntroductionMomentsCombinatoricsConsequences $W_3(1)$ DensitiesRMTA combinatorial formula for the even moments

Theorem (Borwein-Nuyens-S-Wan)

$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} \binom{k}{a_1, \dots, a_n}^2.$$

• $f_n(k) := W_n(2k)$ counts the number of *abelian squares*: strings xy of length 2k from an alphabet with n letters such that y is a permutation of x.

Theorem (Borwein-Nuyens-S-Wan)

$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} \binom{k}{a_1, \dots, a_n}^2.$$

- $f_n(k) := W_n(2k)$ counts the number of *abelian squares*: strings xy of length 2k from an alphabet with n letters such that y is a permutation of x.
- Introduced by Erdős and studied by others.
- Surely: $f_1(k) = 1$.

Example

acbc ccba is an abelian square. It contributes to $f_3(4)$.

	Introduction	Moments	Combinatorics	Consequences	$W_{3}(1)$	Densities	RMT		
	A miracle?								
	Example								
In the case of $n = 2$ we count abelian squares made from two letters.									

 $b \, a \, b \, a \, a - a \, b \, a \, a \, b.$

It follows that $f_2(k) = \binom{2k}{k}$.

Introduction	Moments	Combinatorics	Consequences	$W_{3}(1)$	Densities	RMT
A miracle	e?					

Example

In the case of n = 2 we count abelian squares made from two letters.

 $b \underline{\underline{a}} b \underline{\underline{a}} \underline{\underline{a}} \quad a \underline{\underline{b}} a a \underline{\underline{b}}.$

It follows that $f_2(k) = \binom{2k}{k}$.

IntroductionMomentsCombinatoricsConsequences
$$W_3(1)$$
DensitiesRMTA miracle?Example
In the case of $n = 2$ we count abelian squares made from two letters.
 $b \underline{a} b \underline{a} \underline{a}$ $a \underline{b} a a \underline{b}$.

It follows that
$$f_2(k) = \binom{2k}{k}$$
.
• So: $W_2(2k) = \binom{2k}{k}$
Recall:
 $n! = \Gamma(n+1) = \int_0^\infty x^n e^{-x} dx$
 $\Gamma(s+1) = s\Gamma(s)$
 $\Gamma(1/2) = \sqrt{\pi}$

Introduction Moments Combinatorics Consequences
$$W_3(1)$$
 Densities RMT
A miracle?
Example
In the case of $n = 2$ we count abelian squares made from two letters.
 $b\underline{a}b\underline{a}\underline{a}\underline{a}$ $a\underline{b}a a\underline{b}$.
It follows that $f_2(k) = \binom{2k}{k}$.
 e So: $W_2(2k) = \binom{2k}{k}$.
 $Putting k = \frac{1}{2}$ we obtain $\binom{1}{1/2} = \frac{1!}{(1/2)!^2} = \frac{1}{\Gamma^2(3/2)} = \frac{4}{\pi}$

IntroductionMomentsCombinatoricsConsequences
$$W_3(1)$$
DensitiesRMTA miracle?ExampleIn the case of $n = 2$ we count abelian squares made from two letters.
 $b \underline{a} b \underline{a} \underline{a}$ $a \underline{b} a a \underline{b}$.It follows that $f_2(k) = \binom{2k}{k}$.Recall:
 $n! = \Gamma(n+1) = \int_0^\infty x^n e^{-x} dx$ It follows that $f_2(k) = \binom{2k}{k}$.Recall:
 $n! = \Gamma(n+1) = \int_0^\infty x^n e^{-x} dx$ O So: $W_2(2k) = \binom{2k}{k}$.Putting $k = \frac{1}{2}$ we obtain $\binom{1}{1/2} = \frac{1!}{(1/2)!^2} = \frac{1}{\Gamma^2(3/2)} = \frac{4}{\pi}$ Indeed: $W_2(s) = \binom{s}{s/2}$

Convolutions:

$$f_{n+m}(k) = \sum_{j=0}^{k} {\binom{k}{j}}^2 f_n(j) f_m(k-j).$$

Convolutions:

$$f_{n+m}(k) = \sum_{j=0}^{k} {\binom{k}{j}}^2 f_n(j) f_m(k-j).$$

• Recursions by Sister Celine, e.g.:

$$(k+2)^2 f_3(k+2) - (10k^2 + 30k + 23)f_3(k+1) + 9(k+1)^2 f_3(k) = 0.$$

$$(k+2)^2 W_3(2k+4) - (10k^2 + 30k + 23)W_3(2k+2) + 9(k+1)^2 W_3(2k) = 0.$$

$$(k+2)^2 W_3(2k+4) - (10k^2 + 30k + 23)W_3(2k+2) + 9(k+1)^2 W_3(2k) = 0.$$

Theorem (Carlson)
If
$$f(z)$$
 is analytic for $\operatorname{Re}(z) \ge 0$, "nice", and
 $f(0) = 0$, $f(1) = 0$, $f(2) = 0$, ...,
then $f(z) = 0$ identically.

Armin Straub How far does a drunkard get?

$$(k+2)^2 W_3(2k+4) - (10k^2 + 30k + 23)W_3(2k+2) + 9(k+1)^2 W_3(2k) = 0.$$

$$(k+2)^2 W_3(2k+4) - (10k^2 + 30k + 23)W_3(2k+2) + 9(k+1)^2 W_3(2k) = 0.$$

• So we get complex functional equations like

$$(s+4)^2 W_3(s+4) - 2(5s^2 + 30s + 46) W_3(s+2) + 9(s+2)^2 W_3(s) = 0.$$

• So we get complex functional equations like

$$(s+4)^2W_3(s+4) - 2(5s^2+30s+46)W_3(s+2) + 9(s+2)^2W_3(s) = 0.$$

• This gives analytic continuations of $W_n(s)$ to the complex plane, with poles at certain negative integers.

Introduction Moments Combinatorics Consequences $W_3(1)$ Densities RMT $W_4(s)$ in the complex plane

Introduction Moments Combinatorics Consequences $W_3(1)$ Densities RMT $W_4(s)$ in the complex plane

• Easy:
$$W_2(2k) = \binom{2k}{k}$$
. In fact, $W_2(s) = \binom{s}{s/2}$.

• Easy:
$$W_2(2k) = \binom{2k}{k}$$
. In fact, $W_2(s) = \binom{s}{s/2}$.
• In the case $n = 3$,

$$W_3(2k) = \sum_{j=0}^k \binom{k}{j}^2 \binom{2j}{j}$$

• Easy:
$$W_2(2k) = \binom{2k}{k}$$
. In fact, $W_2(s) = \binom{s}{s/2}$.
• In the case $n = 3$,

$$W_3(2k) = \sum_{j=0}^k \binom{k}{j}^2 \binom{2j}{j}$$

• Idea: again, replace k by a complex variable

$${}_{p}F_{q}\left(\begin{array}{c}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{q}\end{array}\right|x\right)=\sum_{n=0}^{\infty}\frac{(a_{1})_{n}\cdots(a_{p})_{n}}{(b_{1})_{n}\cdots(b_{q})_{n}}\frac{x^{n}}{n!}$$

• $(a)_n = a(a+1)\cdots(a+n-1)$ is the Pochhammer symbol

$${}_{p}F_{q}\begin{pmatrix}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{q}\end{pmatrix}x = \sum_{n=0}^{\infty}\frac{(a_{1})_{n}\cdots(a_{p})_{n}}{(b_{1})_{n}\cdots(b_{q})_{n}}\frac{x^{n}}{n!}$$

• $(a)_n = a(a+1)\cdots(a+n-1)$ is the Pochhammer symbol

• Why hypergeometric?

Geometric:
$$\sum_{n=0}^{\infty} c_n$$
 where $\frac{c_{n+1}}{c_n} = x$

$${}_{p}F_q\left(\begin{array}{c}a_1,\ldots,a_p\\b_1,\ldots,b_q\end{array}\right|x\right) = \sum_{n=0}^{\infty} \frac{(a_1)_n\cdots(a_p)_n}{(b_1)_n\cdots(b_q)_n} \frac{x^n}{n!}$$

• $(a)_n = a(a+1)\cdots(a+n-1)$ is the Pochhammer symbol

• Why hypergeometric?

Geometric:
$$\sum_{\substack{n=0\\\infty}}^{\infty} c_n \text{ where } \frac{c_{n+1}}{c_n} = x$$

Hypergeometric:
$$\sum_{n=0}^{\infty} c_n \text{ where } \frac{c_{n+1}}{c_n} = r(n)$$

$${}_{p}F_q\left(\begin{array}{c}a_1,\ldots,a_p\\b_1,\ldots,b_q\end{array}\right|x\right) = \sum_{n=0}^{\infty} \frac{(a_1)_n\cdots(a_p)_n}{(b_1)_n\cdots(b_q)_n} \frac{x^n}{n!}$$

• $(a)_n = a(a+1)\cdots(a+n-1)$ is the Pochhammer symbol

• Why hypergeometric?

Geometric:
$$\sum_{n=0}^{\infty} c_n \text{ where } \frac{c_{n+1}}{c_n} = x$$

Hypergeometric:
$$\sum_{n=0}^{\infty} c_n \text{ where } \frac{c_{n+1}}{c_n} = r(n)$$
$$r(n) = \frac{(n+a_1)\cdots(n+a_p)}{(n+b_1)\cdots(n+b_q)} \frac{x}{n+1}$$

• Easy:
$$W_2(2k) = \binom{2k}{k}$$
. In fact, $W_2(s) = \binom{s}{s/2}$.

In the case n = 3,

$$W_3(2k) = \sum_{j=0}^k \binom{k}{j}^2 \binom{2j}{j}$$

• Easy:
$$W_2(2k) = \binom{2k}{k}$$
. In fact, $W_2(s) = \binom{s}{s/2}$.

In the case n = 3,

$$W_{3}(2k) = \sum_{j=0}^{k} {\binom{k}{j}}^{2} {\binom{2j}{j}} = \underbrace{{}_{3}F_{2} \left(\begin{array}{c} \frac{1}{2}, -k, -k \\ 1, 1 \end{array} \right| 4}_{=:V_{3}(2k)}$$

• Easy:
$$W_2(2k) = \binom{2k}{k}$$
. In fact, $W_2(s) = \binom{s}{s/2}$.

In the case n = 3,

$$W_{3}(2k) = \sum_{j=0}^{k} {\binom{k}{j}}^{2} {\binom{2j}{j}} = \underbrace{{}_{3}F_{2} \left(\begin{array}{c} \frac{1}{2}, -k, -k \\ 1, 1 \end{array} \right| 4}_{=:V_{3}(2k)}$$

• So by Carlson's Theorem $W_3(s) = V_3(s)$, no!?!??

Theorem (Borwein-Nuyens-S-Wan)

For integers k we have
$$W_3(k) = \text{Re }_3F_2\begin{pmatrix} \frac{1}{2}, -\frac{k}{2}, -\frac{k}{2} \\ 1, 1 \end{vmatrix} 4$$
.

Theorem (Borwein-Nuyens-S-Wan)
For integers
$$k$$
 we have $W_3(k) = \operatorname{Re} {}_3F_2\left(\begin{array}{c} \frac{1}{2}, -\frac{k}{2}, -\frac{k}{2} \\ 1, 1 \end{array} \middle| 4 \right).$

Corollary (Borwein-Nuyens-S-Wan)

$$W_3(1) = \frac{3}{16} \frac{2^{1/3}}{\pi^4} \Gamma^6\left(\frac{1}{3}\right) + \frac{27}{4} \frac{2^{2/3}}{\pi^4} \Gamma^6\left(\frac{2}{3}\right)$$

• Similar formulas for $W_3(3), W_3(5), \ldots$

$$p_{3}(x) = \frac{2\sqrt{3}}{\pi} \frac{x}{(3+x^{2})} {}_{2}F_{1} \left(\frac{\frac{1}{3}, \frac{2}{3}}{1} \left| \frac{x^{2} (9-x^{2})^{2}}{(3+x^{2})^{3}} \right) \right.$$
classical with a spin
$$p_{4}(x) = \frac{2}{\pi^{2}} \frac{\sqrt{16-x^{2}}}{x} \operatorname{Re} {}_{3}F_{2} \left(\frac{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{\frac{5}{6}, \frac{7}{6}} \left| \frac{(16-x^{2})^{3}}{108x^{4}} \right) \right.$$
new, BSWZ

Introduction	Moments	Combinatorics	Consequences	$W_{3}(1)$	Densities	RMT
A straigh	t line?					

•
$$W_n(s) = \int_0^\infty x^s p_n(x) dx$$

• Or: $W_n(s-1) = \mathcal{M}[p_n; s]$

 $\begin{array}{l} \mbox{Mellin transform } F(s) \mbox{ of } f(x) {:} \\ \mathcal{M}\left[f;s\right] = \int_{0}^{\infty} x^{s-1} f(x) \, \mathrm{d}x \end{array}$

Introduction Moments Combinatorics Consequences Densities RMT Relation between densities and moments

•
$$W_n(s) = \int_0^\infty x^s p_n(x) \,\mathrm{d}x$$

• Or:
$$W_n(s-1) = \mathcal{M}[p_n;s]$$

translate into DEs for $p_n(x)$.

Mellin transform F(s) of f(x): $\mathcal{M}[f;s] = \int_0^\infty x^{s-1} f(x) \,\mathrm{d}x$ • Functional equations for $W_n(s)$ • $\mathcal{M}[x^{\mu}f(x);s] = F(s+\mu)$ • $\mathcal{M}[D_r f(x); s] = -(s-1)F(s-1)$ IntroductionMomentsCombinatoricsConsequences $W_3(1)$ DensitiesRMTRelation between densities and moments

•
$$W_n(s) = \int_0^\infty x^s p_n(x) \,\mathrm{d}x$$

• Or:
$$W_n(s-1) = \mathcal{M}[p_n;s]$$

• Functional equations for $W_n(s)$ translate into DEs for $p_n(x)$.

Mellin transform
$$F(s)$$
 of $f(x)$:
 $\mathcal{M}[f;s] = \int_0^\infty x^{s-1} f(x) dx$
• $\mathcal{M}[x^\mu f(x);s] = F(s+\mu)$
• $\mathcal{M}[D_x f(x);s] = -(s-1)F(s-1)$

Example

$$(s+4)^{3}W_{4}(s+4) - 4(s+3)(5s^{2}+30s+48)W_{4}(s+2) + 64(s+2)^{3}W_{4}(s) = 0$$

translates into $A_4 \cdot p_4(x) = 0$ where A_4 is

$$(x-4)(x-2)x^{3}(x+2)(x+4)D_{x}^{3}+6x^{4}(x^{2}-10)D_{x}^{2}++x(7x^{4}-32x^{2}+64)D_{x}+(x^{2}-8)(x^{2}+8)$$

IntroductionMomentsCombinatoricsConsequences $W_3(1)$ DensitiesRMTRelation between densities and moments

•
$$W_n(s) = \int_0^\infty x^s p_n(x) \,\mathrm{d}x$$

• Or:
$$W_n(s-1) = \mathcal{M}[p_n;s]$$

• Functional equations for $W_n(s)$ translate into DEs for $p_n(x)$.

Mellin transform
$$F(s)$$
 of $f(x)$:
 $\mathcal{M}[f;s] = \int_0^\infty x^{s-1} f(x) dx$
• $\mathcal{M}[x^\mu f(x);s] = F(s+\mu)$
• $\mathcal{M}[D_x f(x);s] = -(s-1)F(s-1)$

Example

Pole structure of
$$W_n(s)$$
 determines $p_n(x)$ at $x = 0$:

$$W_4(s) = \frac{3}{2\pi^2} \frac{1}{(s+2)^2} + \frac{9\log 2}{2\pi^2} \frac{1}{s+2} + O(1) \quad \text{as } s \to -2$$
implies

$$p_4(x) = -\frac{3}{2\pi^2} x \log(x) + \frac{9\log 2}{2\pi^2} x + O(x^3) \quad \text{as } x \to 0$$
+ 3)

Theorem

- The density p_n satisfies a DE of order n-1.
- Let n ≤ 1000. If n is even (odd) then p_n is real analytic except at 0 and the even (odd) integers m ≤ n.

Theorem

- The density p_n satisfies a DE of order n-1.
- Let n ≤ 1000. If n is even (odd) then p_n is real analytic except at 0 and the even (odd) integers m ≤ n.

Conjecture (confirmed, e.g., for
$$n \leq 1000$$
)

$$\sum_{\substack{0 \leq m_1, ..., m_j \leq n/2 \ m_i < m_{i+1}}} \prod_{i=1}^j (n-2m_i)^2 = \sum_{\substack{1 \leq \alpha_1, ..., \alpha_j \leq n \ \alpha_i \leq \alpha_{i+1} - 2}} \prod_{i=1}^j \alpha_i (n+1-\alpha_i).$$

Example

$$\sum_{m=0}^{n/2-1} (n-2m)^2 = \sum_{\alpha=1}^n \alpha(n+1-\alpha) = \binom{n+2}{3}$$

• Mahler measure of $p(x_1, \ldots, x_n)$:

$$\mu(p) := \int_0^1 \cdots \int_0^1 \log \left| p\left(e^{2\pi i t_1}, \dots, e^{2\pi i t_n}\right) \right| \mathrm{d}t_1 \mathrm{d}t_2 \dots \mathrm{d}t_n$$

• Mahler measure of $p(x_1, \ldots, x_n)$:

$$\mu(p) := \int_0^1 \cdots \int_0^1 \log \left| p\left(e^{2\pi i t_1}, \dots, e^{2\pi i t_n} \right) \right| \mathrm{d}t_1 \mathrm{d}t_2 \dots \mathrm{d}t_n$$

•
$$W'_n(0) = \mu(x_1 + \ldots + x_n) = \mu(1 + x_1 + \ldots + x_{n-1})$$

• Mahler measure of $p(x_1, \ldots, x_n)$:

$$\mu(p) := \int_0^1 \cdots \int_0^1 \log \left| p\left(e^{2\pi i t_1}, \dots, e^{2\pi i t_n}\right) \right| \mathrm{d}t_1 \mathrm{d}t_2 \dots \mathrm{d}t_n$$

•
$$W'_n(0) = \mu(x_1 + \ldots + x_n) = \mu(1 + x_1 + \ldots + x_{n-1})$$

• Rediscovered the classical results:

$$\mu(1 + x_1 + x_2) = \frac{1}{2} \operatorname{Ls}_2\left(\frac{\pi}{3}\right)$$
$$\mu(1 + x_1 + x_2 + x_3) = \frac{7\zeta(3)}{2\pi^2}$$

• Generalized log-sine integral:

$$\operatorname{Ls}_{n}^{(k)}(\sigma) := -\int_{0}^{\sigma} \theta^{k} \log^{n-1-k} \left| 2 \sin \frac{\theta}{2} \right| \, \mathrm{d}\theta$$

• Generalized log-sine integral:

$$\operatorname{Ls}_{n}^{(k)}(\sigma) := -\int_{0}^{\sigma} \theta^{k} \log^{n-1-k} \left| 2 \sin \frac{\theta}{2} \right| \, \mathrm{d}\theta$$

• Automatic evaluation polylogarithmic terms: e.g.

$$-\operatorname{Ls}_{6}^{(1)}(\pi) = 24\operatorname{Li}_{3,1,1,1}(-1) - 18\operatorname{Li}_{5,1}(-1) + 3\zeta(3)^{2} - \frac{3}{1120}\pi^{6}$$

• Generalized log-sine integral:

$$\operatorname{Ls}_{n}^{(k)}(\sigma) := -\int_{0}^{\sigma} \theta^{k} \log^{n-1-k} \left| 2 \sin \frac{\theta}{2} \right| \, \mathrm{d}\theta$$

• Automatic evaluation polylogarithmic terms: e.g.

$$-\operatorname{Ls}_{6}^{(1)}(\pi) = 24\operatorname{Li}_{3,1,1,1}(-1) - 18\operatorname{Li}_{5,1}(-1) + 3\zeta(3)^{2} - \frac{3}{1120}\pi^{6}$$

• Appear in the evaluation of Feynman diagrams:

THANK YOU!

- Moments of random walks: http://www.carma.newcastle.edu.au/~jb616/walks.pdf, http://www.carma.newcastle.edu.au/~jb616/walks2.pdf
- Densities of random walks: arXiv:1103.2995
- Mahler measures and log-sine integrals: arXiv:1103.3893, arXiv:1103.3035, arXiv:1103.4298

• Recall:

$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} \binom{k}{a_1, \dots, a_n}^2$$

• Recall:

$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} \binom{k}{a_1, \dots, a_n}^2$$

• Therefore:

$$\sum_{k=0}^{\infty} W_n(2k) \frac{(-x)^k}{(k!)^2} = \sum_{k=0}^{\infty} \sum_{a_1 + \dots + a_n = k} \frac{(-x)^k}{(a_1!)^2 \cdots (a_n!)^2}$$
$$= \left(\sum_{a=0}^{\infty} \frac{(-x)^a}{(a!)^2}\right)^n = J_0(2\sqrt{x})^n$$

Theorem (Ramanujan's Master Theorem)

For "nice" analytic functions φ ,

$$\int_0^\infty x^{\nu-1} \left(\sum_{k=0}^\infty \frac{(-1)^k}{k!} \varphi(k) x^k \right) \, \mathrm{d}x = \Gamma(\nu) \varphi(-\nu).$$

IntroductionMomentsCombinatoricsConsequences $W_3(1)$ DensitiesRMTRamanujan'sMaster Theorem

Theorem (Ramanujan's Master Theorem) For "nice" analytic functions φ ,

$$\int_0^\infty x^{\nu-1} \left(\sum_{k=0}^\infty \frac{(-1)^k}{k!} \varphi(k) x^k \right) \, \mathrm{d}x = \Gamma(\nu) \varphi(-\nu).$$

• Begs to be applied to

$$\sum_{k=0}^\infty W_n(2k) \frac{(-x)^k}{(k!)^2} = J_0(2\sqrt{x})^n$$
 by setting $\varphi(k)=\frac{W_n(2k)}{k!}$

IntroductionMomentsCombinatoricsConsequences $W_3(1)$ DensitiesRMTRamanujan's Master Theorem

• We find:

$$W_n(-s) = 2^{1-s} \frac{\Gamma(1-s/2)}{\Gamma(s/2)} \int_0^\infty x^{s-1} J_0^n(x) \, \mathrm{d}x$$

IntroductionMomentsCombinatoricsConsequences $W_3(1)$ DensitiesRMTRamanujan's Master Theorem

• We find:

$$W_n(-s) = 2^{1-s} \frac{\Gamma(1-s/2)}{\Gamma(s/2)} \int_0^\infty x^{s-1} J_0^n(x) \, \mathrm{d}x$$

 A 1-dimensional representation! Useful for symbolical computations as well as for high-precision integration IntroductionMomentsCombinatoricsConsequences $W_3(1)$ DensitiesRMTRamanujan'sMaster Theorem

• We find:

$$W_n(-s) = 2^{1-s} \frac{\Gamma(1-s/2)}{\Gamma(s/2)} \int_0^\infty x^{s-1} J_0^n(x) \, \mathrm{d}x$$

- A 1-dimensional representation! Useful for symbolical computations as well as for high-precision integration
- First and more inspiredly found by David Broadhurst building on work of J.C. Kluyver

- David Broadhurst. "Bessel moments, random walks and Calabi-Yau equations." Preprint, Nov 2009.
- J.C. Kluyver. "A local probability problem." *Nederl. Acad. Wetensch. Proc.*, **8**, 341–350, 1906.

Introduction	Moments	Combinatorics	Consequences	$W_{3}(1)$	Densities	RMT
A convolution formula						

Conjecture

For even n,

$$W_n(s) \stackrel{?}{=} \sum_{j=0}^{\infty} {\binom{s/2}{j}}^2 W_{n-1}(s-2j).$$

Introduction	Moments	Combinatorics	Consequences	$W_{3}(1)$	Densities	RMT
A convolution formula						

Conjecture

For even n,

$$W_n(s) \stackrel{?}{=} \sum_{j=0}^{\infty} {\binom{s/2}{j}}^2 W_{n-1}(s-2j).$$

• Inspired by the combinatorial convolution for $f_n(k) = W_n(2k)$:

$$f_{n+m}(k) = \sum_{j=0}^{k} {\binom{k}{j}}^2 f_n(j) f_m(k-j)$$

Introduction	Moments	Combinatorics	Consequences	$W_{3}(1)$	Densities	RMT
A convolution formula						

Conjecture

For even n,

$$W_n(s) \stackrel{?}{=} \sum_{j=0}^{\infty} {\binom{s/2}{j}}^2 W_{n-1}(s-2j).$$

• Inspired by the combinatorial convolution for $f_n(k) = W_n(2k)$:

$$f_{n+m}(k) = \sum_{j=0}^{k} {\binom{k}{j}}^2 f_n(j) f_m(k-j)$$

- True for even s
- True for n=2
- True for n = 4 and integer s
- In general, proven up to some technical growth conditions