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THE TOOLS TODAY

ISC Inverse Symbolic Calculator

PSLQ Lattice Reduction Algorithm

OEIS On-Line Encyclopedia of Integer Sequences

CAD Cylindrical Algebraic Decomposition

WZ Wilf–Zeilberger Theory
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Random walks

d

• We study random walks in the plane
consisting of n steps. Each step is of
length 1 and is taken in a randomly
chosen direction.

• We are interested in the distance
traveled in n steps.

For instance, how large is this dis-
tance on average?

Q

• Probability density: pn(x)
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Random walks are only about 100 years old

• Karl Pearson asked for
pn(x) in Nature in 1905.

This famous question coined

the term random walk.

Applications include:

• dispersion of mosquitoes
• random migration of

micro-organisms
• phenomenon of laser speckle
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Long random walks

pn(x) ≈ 2x

n
e−x

2/n for large n
THM
Rayleigh,

1905
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“The lesson of Lord Rayleigh’s solution is that in open
country the most probable place to find a drunken
man who is at all capable of keeping on his feet is
somewhere near his starting point!

Karl Pearson, 1905 ”
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Densities of short walks
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Moments

• The moments of a RV X are E(X), E(X2), E(X3), . . .

• If X has probability density f(x) then

E(Xs) =

∫ ∞
−∞

xsf(x) dx

The moments E(Xs) are analytic in s. (if, e.g., f(x) is compactly supported)FACT

• Represent the kth step by the complex number e2πixk .

• The sth moment of the distance after n steps is:

Wn(s) :=

∫
[0,1]n

∣∣∣∣ n∑
k=1

e2πxki
∣∣∣∣sdx

In particular, Wn(1) is the average distance after n steps.
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Average distance traveled in two steps

• Numerically: W2(1) ≈ 1.2732395447351626862
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The simple two-step case confirmed

• The average distance in two steps:

W2(1) =

∫ 1

0

∫ 1

0

∣∣e2πix + e2πiy
∣∣dxdy = ?

=

∫ 1

0

∣∣1 + e2πiy
∣∣ dy

=

∫ 1

0
2 cos(πy)dy

=
4

π
≈ 1.27324

• Mathematica 7 and Maple 14 think the double integral is 0.
Better: Mathematica 8 and 9 just don’t evaluate the double integral.

• This is the average length of a random arc on a
unit circle.

∣∣1 + e2πiy
∣∣

=
∣∣1 + (cosπy + i sinπy)2

∣∣
= 2 cos(πy)
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Moments of random walks

The sth moment Wn(s) of the density pn:

Wn(s) :=

∫ ∞
0

xspn(x) dx =

∫
[0,1]n

∣∣e2πix1 + . . .+ e2πixn
∣∣s dx

DEF

• On a desktop:

W3(1) ≈ 1.57459723755189365749

W4(1) ≈ 1.79909248

W5(1) ≈ 2.00816

• On a supercomputer: Lawrence Berkeley National Laboratory, 256 cores

W5(1) ≈ 2.0081618

• Hard to evaluate numerically to high precision.
Monte-Carlo integration gives approximations with an asymptotic error of

O(1/
√
N) where N is the number of sample points.

W2(1) = 4
π W3(1) = 1.57459723755189 . . . = ?

For instance, the sequence W3(2k) is 1, 3, 15, 93, 639, 4653, . . .
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The integer sequence database
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The integer sequence database
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Advertisement

• Based on the observation that

W3(2k) =

k∑
j=0

(
k

j

)2(2j

j

)
,

knowledge of modular forms allows us to deduce:

W3(1) =
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)
= 1.57459723755189 . . .

THM
Borwein-
Nuyens-
S-Wan,

2010
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Modular forms

“Modular forms are functions on the complex plane that are in-
ordinately symmetric. They satisfy so many internal symmetries
that their mere existence seem like accidents. But they do exist.

Barry Mazur (BBC Interview, “The Proof”, 1997) ”
Actions of γ =

(
a b
c d

)
∈ SL2(Z):

• on τ ∈ H by γ · τ =
aτ + b

cτ + d
,

• on f : H → C by (f |kγ)(τ) = (cτ + d)−kf(γ · τ).

DEF

SL2(Z) is generated by T = ( 1 1
0 1 ) and S =

(
0 −1
1 0

)
.

T · τ = τ + 1, S · τ = −1

τ

EG

Tools for special functions and special numbers Armin Straub
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Modular forms

“There’s a saying attributed to Eichler that there are five funda-
mental operations of arithmetic: addition, subtraction, multipli-
cation, division, and modular forms.

Andrew Wiles (BBC Interview, “The Proof”, 1997) ”
A function f : H→ C is a modular form of weight k if

• f |kγ = f for all γ ∈ SL2(Z),

• f is holomorphic (including at the cusp i∞).

DEF

f(τ + 1) = f(τ), τ−kf(−1/τ) = f(τ).
EG

• Similarly, MFs w.r.t. finite-index Γ 6 SL2(Z)

• Spaces of MFs finite dimensional, Hecke operators, . . .

Tools for special functions and special numbers Armin Straub
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Modular forms: a prototypical example

• The Dedekind eta function (q = e2πiτ )

η(τ) = q1/24
∏
n>1

(1− qn)

transforms as

η(τ + 1) = eπi/12η(τ), η(−1/τ) =
√
−iτη(τ).

∆(τ) = (2π)12η(τ)24 is a modular form of weight 12.EG

Tools for special functions and special numbers Armin Straub
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Modularity of the three-step moments

• The even moments 1, 3, 15, 93, 639, . . .

W3(2k) =

k∑
j=0

(
k

j

)2(2j

j

)
have the modular parametrization

η6(2τ)η(3τ)

η3(τ)η2(6τ)

modular form

=
∑
k>0

W3(2k)

(
η(τ)η2(6τ)

η2(2τ)η(3τ)

)4k

modular function

.

The values of modular functions at quadratic irrationalities
τ ∈ Q(

√
−d) are algebraic!

PSLQ predicts that for the above modular function x(τ), the value
x(i/3) ≈ 0.52754 has minimal polynomial 1− 6x4 − 24x6 − 3x8.

EG
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Integer relation algorithms

• How does the ISC recognize numbers?

• PSLQ takes numbers x = (x1, x2, . . . , xn) and tries to find integers
m = (m1,m2, . . . ,mn), not all zero, such that

x ·m = m1x1 + . . .+mnxn = 0.

The vector m is called an integer relation for x.
In case that no relation is found, PSLQ provides a lower bound for the norm of

any potential integer relation.

Is x = 0.31783724519578224473 . . . algebraic?

In[1]:= PSLQ[{1, x, x2, x3, x4}]
Out[1]= {1, 0,−10, 0, 1}

That is, x likely has minimal polynomial 1− 10x2 + x4.
Therefore, x =

√
3−
√
2.

EG

Tools for special functions and special numbers Armin Straub
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m = (m1,m2, . . . ,mn), not all zero, such that

x ·m = m1x1 + . . .+mnxn = 0.

The vector m is called an integer relation for x.
In case that no relation is found, PSLQ provides a lower bound for the norm of

any potential integer relation.

Is x = 0.31783724519578224473 . . . algebraic?

In[1]:= PSLQ[{1, x, x2, x3, x4}]
Out[1]= {1, 0,−10, 0, 1}
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Using PSLQ to find functional relations

• A well-known fact: sin((2n− 1)x) is a linear combination of
sin(x), sin3(x), . . . , sin2n−1(x)

In[1]:= With[{x = 1},PSLQ[
N[{Sin[5x], Sin[x], Sin[x]3, Sin[x]5}, 20]]]

Out[1]= {−1, 5,−20, 16}

In other words,

sin(5x) = 5 sin(x)− 20 sin3(x) + 16 sin5(x).
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Cylindrical Algebraic Decomposition

Arithmetic mean > geometric mean

In[1]:= CylindricalDecomposition[(a+b)/2 > Sqrt[ab], {a, b}]
Out[1]= a > 0 ∧ b > 0

EG

If the sum of four positive numbers is 4c and the sum of their
squares is 8c2, then none of the numbers can exceed (1 +

√
3)c.

In[2]:= CylindricalDecomposition[Exists[{a2, a3, a4},
a1 > a2 > a3 > a4 > 0 ∧
a1 + a2 + a3 + a4 == 4c ∧
a2
1 + a2

2 + a2
3 + a2

4 == 8c2], {c, a1}]

Out[2]= c > 0 ∧ 2c < a1 6 (1 +
√

3)c
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Positivity of rational functions

• A rational function

F (x1, . . . , xd) =
∑

n1,...,nd>0

an1,...,nd
xn1
1 · · ·x

nd
d

is positive if an1,...,nd
> 0 for all indices.

An obviously positive rational function:

1

1− x− y + xy
=

1

(1− x)(1− y)
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1 · · ·x
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d

is positive if an1,...,nd
> 0 for all indices.

An obviously positive rational function:

1

1− x− y + xy
=

1

(1− x)(1− y)

EG

1

1− x− y + λxy

is positive if and only if λ 6 1.

THM
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Positivity of rational functions

• A rational function

F (x1, . . . , xd) =
∑

n1,...,nd>0

an1,...,nd
xn1
1 · · ·x

nd
d

is positive if an1,...,nd
> 0 for all indices.

An obviously positive rational function:

1

1− x− y + xy
=

1

(1− x)(1− y)

EG

The following rational function is positive:

1

1− (x+ y + z + w) + 2
3(xy + xz + xw + yz + yw + zw)

This is a rescaled version of 1/e2(1− x, 1− y, 1− z, 1− w).

CONJ
Askey–
Gasper
1972
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Positivity of rational functions

The Askey–Gasper rational function A(x, y, z) and the Szegő
rational function S(x, y, z) are positive.

A(x, y, z) =
1

1− (x+ y + z) + 4xyz

S(x, y, z) =
1

1− (x+ y + z) + 3
4(xy + yz + zx)

EG

There is a positivity-preserving operator T such that T ·A = S.THM
S 2007

The diagonal Taylor terms of A are given by

[xnynzn]A(x, y, z) =
n∑
k=0

(
n

k

)3

.

By WZ, both sides satisfy the recurrence

(n+ 1)2an+1 = (7n2 + 7n+ 2)an + 8n2an−1.
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Positivity of rational functions

The diagonal Taylor terms of S(2x, 2y, 2z), namely

1, 12, 198, 3720, 75690, 1626912, . . . ,

satisfy the recurrence

2(n+ 1)2sn+1 = 3
(
27n2 + 27n+ 8

)
sn − 81(3n− 1)(3n+ 1)sn−1.

EG

To prove positivity from the recurrence, apply CAD to the formula

(∀n,A,B) n > 1, A > 0, B > λA =⇒ C > λB

where 2(n+ 1)2C = 3(27n2 + 27n+ 8)B − 81(3n− 1)(3n+ 1)A.

In[1]:= With[{C = . . .},
CylindricalDecomposition[ForAll[{n,A,B},
n > 1 ∧B > λA ∧A > 0, C > λB], {λ}]]

Out[1]= 27/2 6 λ 6 3/8(31 +
√

385)
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Positivity of rational functions

• The Kauers–Zeilberger rational function

1

1− (x+ y + z + w) + 2(yzw + xzw + xyw + xyz) + 4xyzw

is conjectured to be positive.

• Its positivity implies the positivity of the Askey–Gasper function

1

1− (x+ y + z + w) + 2
3(xy + xz + xw + yz + yw + zw)

.

The Kauers–Zeilberger function has diagonal coefficients

dn =

n∑
k=0

(
n

k

)2(2k

n

)2

.

PROP
S-Zudilin

2013
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Positivity of rational functions

Under what condition(s) is the positivity of a rational function

h(x1, . . . , xd) =
1∑d

k=0 ckek(x1, . . . , xd)

implied by the positivity of its diagonal?

Q

• Is the positivity of h(x1, . . . , xd−1, 0) a sufficient condition?

1
1+x+y has positive diagonal coefficients but is not positive.EG

h(x, y) =
1

1 + c1(x+ y) + c2xy

is positive iff h(x, 0) and the diagonal of h(x, y) are positive.

THM
S-Zudilin

2013
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Drunken birds

“A drunk man will find his way home,
but a drunk bird may get lost forever.

Shizuo Kakutani, 1911–2004 ”
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

A. Straub, W. Zudilin
Positivity of rational functions and their diagonals
Preprint, 2013

J. Borwein, A. Straub, J. Wan, W. Zudilin (appendix by D. Zagier)
Densities of short uniform random walks
Canadian Journal of Mathematics, Vol. 64, Nr. 5, 2012, p. 961-990

J. Borwein, D. Nuyens, A. Straub, J. Wan
Some arithmetic properties of short random walk integrals
The Ramanujan Journal, Vol. 26, Nr. 1, 2011, p. 109-132

A. Straub
Positivity of Szegö’s rational function
Advances in Applied Mathematics, Vol. 41, Issue 2, Aug 2008, p. 255-264
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