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Apéry numbers and the irrationality of ζ(3)

• The Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

satisfy

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.

ζ(3) =
∑∞

n=1
1
n3 is irrational.THM

Apéry ’78

The same recurrence is satisfied by the “near”-integers

B(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)2
 n∑
j=1

1

j3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
 .

Then, B(n)
A(n) → ζ(3). But too fast for ζ(3) to be rational.

proof
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Zagier’s search and Apéry-like numbers

• Recurrence for Apéry numbers is the case (a, b, c) = (17, 5, 1) of

(n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − cn3un−1.

Are there other tuples (a, b, c) for which the solution defined by
u−1 = 0, u0 = 1 is integral?

Q
Beukers,

Zagier

• Essentially, only 14 tuples (a, b, c) found. (Almkvist–Zudilin)

• 4 hypergeometric and 4 Legendrian solutions
• 6 sporadic solutions

• Similar (and intertwined) story for:
• (n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1 (Beukers, Zagier)

• (n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − n(cn2 + d)un−1 (Cooper)
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3 / 37



Zagier’s search and Apéry-like numbers
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Apéry-like numbers

• Hypergeometric and Legendrian solutions have generating functions

3F2

( 1
2 , α, 1− α

1, 1

∣∣∣∣4Cαz) , 1

1− Cαz
2F1

(
α, 1− α

1

∣∣∣∣ −Cαz1− Cαz

)2

,

with α = 1
2 ,

1
3 ,

1
4 ,

1
6 and Cα = 24, 33, 26, 24 · 33.

• The six sporadic solutions are:

(a, b, c) A(n)

(7, 3, 81)
∑
k(−1)k3n−3k

(
n
3k

)(
n+k
n

) (3k)!
k!3

(11, 5, 125)
∑
k(−1)k

(
n
k

)3 ((4n−5k−1
3n

)
+
(
4n−5k

3n

))
(10, 4, 64)

∑
k

(
n
k

)2(2k
k

)(
2(n−k)
n−k

)
(12, 4, 16)

∑
k

(
n
k

)2(2k
n

)2
(9, 3,−27)

∑
k,l

(
n
k

)2(n
l

)(
k
l

)(
k+l
n

)
(17, 5, 1)

∑
k

(
n
k

)2(n+k
n

)2
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Modularity of Apéry-like numbers

• The Apéry numbers 1, 5, 73, 1145, . . .

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

satisfy

η7(2τ)η7(3τ)

η5(τ)η5(6τ)

1 + 5q + 13q2 + 23q3 + O(q4)

modular form

=
∑
n>0

A(n)

(
η12(τ)η12(6τ)

η12(2τ)η12(3τ)

)n
q − 12q2 + 66q3 + O(q4) q = e2πiτ

modular function

.

Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

FACT

• Context: f(τ) modular form of weight k
x(τ) modular function
y(x) such that y(x(τ)) = f(τ)

Then y(x) satisfies a linear differential equation of order k + 1.
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Supercongruences for Apéry numbers

• Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,

A(p) ≡ 5 (mod p3).

• Gessel (1982) proved that A(mp) ≡ A(m) (mod p3).

The Apéry numbers satisfy the supercongruence (p > 5)

A(mpr) ≡ A(mpr−1) (mod p3r).

THM
Beukers,
Coster

’85, ’88

Simple combinatorics proves the congruence(
2p

p

)
=
∑
k

(
p

k

)(
p

p− k

)
≡ 1 + 1 (mod p2).

For p > 5, Wolstenholme’s congruence shows that, in fact,(
2p

p

)
≡ 2 (mod p3).

EG
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Supercongruences for Apéry-like numbers

• Conjecturally, supercongruences like

A(mpr) ≡ A(mpr−1) (mod p3r)

hold for all Apéry-like numbers. Osburn–Sahu ’09

• Current state of affairs for the six sporadic sequences from earlier:

(a, b, c) A(n)

(7, 3, 81)
∑
k(−1)k3n−3k

(
n
3k

)(
n+k
n

) (3k)!
k!3 open!! modulo p2

Amdeberhan ’14

(11, 5, 125)
∑
k(−1)k

(
n
k

)3 ((4n−5k−1
3n

)
+
(
4n−5k

3n

))
Osburn–Sahu–S ’14

(10, 4, 64)
∑
k

(
n
k

)2(2k
k

)(
2(n−k)
n−k

)
Osburn–Sahu ’11

(12, 4, 16)
∑
k

(
n
k

)2(2k
n

)2
Osburn–Sahu–S ’14

(9, 3,−27)
∑
k,l

(
n
k

)2(n
l

)(
k
l

)(
k+l
n

)
open

(17, 5, 1)
∑
k

(
n
k

)2(n+k
n

)2
Beukers, Coster ’87-’88

Robert Osburn Brundaban Sahu

(University of Dublin) (NISER, India)
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Non-super congruences are abundant

a(mpr) ≡ a(mpr−1) (mod pr) (C)

• realizable sequences a(n), i.e., for some map T : X → X,

a(n) = #{x ∈ X : Tnx = x} “points of period n”
Everest–van der Poorten–Puri–Ward ’02, Arias de Reyna ’05

• a(n) = ct Λ(x)n van Straten–Samol ’09

if origin is only interior pt of the Newton polyhedron of Λ(x) ∈ Zp[x±1
1 , . . . , x±1

d ]

• If a(1) = 1, then (C) is equivalent to exp

( ∞∑
n=1

a(n)

n
Tn

)
∈ Z[[T ]].

This is a natural condition in formal group theory.
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Cooper’s sporadic sequences

• Cooper’s search for integral solutions to

(n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − n(cn2 + d)un−1

revealed three additional sporadic solutions: s10 and supercongruence known

s7(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)(
2k

n

)
s10(n) =

n∑
k=0

(
n

k

)4

s18(n) =
[n/3]∑
k=0

(−1)k
(
n

k

)(
2k

k

)(
2(n− k)

n− k

)[(
2n− 3k − 1

n

)
+

(
2n− 3k

n

)]

s7(mp) ≡ s7(m) (mod p3) p > 3

s18(mp) ≡ s18(m) (mod p2)

CONJ
Cooper

2012

s7(mp
r) ≡ s7(mpr−1) (mod p3r) p > 5

s18(mp
r) ≡ s18(mpr−1) (mod p2r)

THM
Osburn-
Sahu-S

2014
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Apéry numbers as diagonals

• Given a series

F (x1, . . . , xd) =
∑

n1,...,nd>0

a(n1, . . . , nd)x
n1
1 · · ·x

nd
d ,

its diagonal coefficients are the coefficients a(n, . . . , n).

The diagonal of a rational function is D-finite.

More generally, the diagonal of a D-finite function is D-finite.
F ∈ K[[x1, . . . , xd]] is D-finite if its partial derivatives span a finite-
dimensional vector space over K(x1, . . . , xd).

THM
Gessel,

Zeilberger,

Lipshitz

1981–88

The Apéry numbers are the diagonal coefficients of

1

(1− x1) [(1− x2)(1− x3)(1− x4)(1− x5)− x1x2x3]
.

EG
Christol

1984

• Such identities are routine to prove, but much harder to discover.
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Apéry numbers as diagonals

The Apéry numbers are the diagonal coefficients of

1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
.

THM
S 2013
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Apéry numbers as diagonals

The Apéry numbers are the diagonal coefficients of

1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
.

THM
S 2013

• Univariate generating function:

∑
n≥0

A(n)xn =
17− x− z

4
√

2(1 + x+ z)3/2
3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣− 1024x

(1− x+ z)4

)
,

where z =
√

1− 34x+ x2.

• Well-developed theory of multivariate asymptotics e.g., Pemantle–Wilson

• Such diagonals are algebraic modulo pr. Furstenberg, Deligne ’67, ’84

Automatically leads to congruences such as

A(n) ≡

{
1 (mod 8), if n even,

5 (mod 8), if n odd.
Chowla–Cowles–Cowles ’80

Rowland–Yassawi ’13
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11 / 37
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Multivariate supercongruences

Define A(n) = A(n1, n2, n3, n4) by

1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
=
∑

n∈Z4
>0

A(n)xn.

• The Apéry numbers are the diagonal coefficients.

• For p > 5, we have the multivariate supercongruences

A(npr) ≡ A(npr−1) (mod p3r).

THM
S 2013
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• The Apéry numbers are the diagonal coefficients.

• For p > 5, we have the multivariate supercongruences

A(npr) ≡ A(npr−1) (mod p3r).

THM
S 2013

•
∑
n>0

a(n)xn = F (x) =⇒
∑
n>0

a(pn)xpn =
1

p

p−1∑
k=0

F (ζkpx) ζp = e2πi/p

• Hence, both A(npr) and A(npr−1) have rational generating function.
The proof, however, relies on an explicit binomial sum for the coefficients.
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Extended version

Let λ = (λ1, . . . , λ`) ∈ Z`>0 with d = λ1 + . . . + λ`, and set
s(j) = λ1 + . . .+ λj−1. Define Aλ(n) by∏̀

j=1

1−
λj∑
r=1

xs(j)+r

− x1x2 · · ·xd
−1 =

∑
n∈Zd>0

Aλ(n)xn.

• If ` ≥ 2, then, for all primes p and integers r ≥ 1,

Aλ(npr) ≡ Aλ(npr−1) (mod p2r).

• If ` ≥ 2 and max(λ1, . . . , λ`) ≤ 2, then, for primes p ≥ 5
and integers r ≥ 1,

Aλ(npr) ≡ Aλ(npr−1) (mod p3r).

THM
S 2014
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Further examples

The Apéry-like numbers, associated with ζ(2),

B(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)
,

are the diagonal coefficients of the rational function

1

(1− x1 − x2)(1− x3)− x1x2x3
=
∑

n∈Z3
>0

B(n)xn.

EG

We find
B(n) =

∑
k∈Z

(
n1
k

)(
n1 + n2 − k

n1

)(
n3
k

)
,

and, for primes p > 5,
B(prn) ≡ B(pr−1n) (mod p3r).

COR
S 2014

• The diagonal case recovers supercongruences of Coster, 1988.
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Further examples

The numbers d = 3: Franel, d = 4: Yang–Zudilin

Yd(n) =
n∑
k=0

(
n

k

)d
,

are the diagonal coefficients of the rational function

1

(1− x1)(1− x2) · · · (1− xd)− x1x2 · · ·xd
=
∑

n∈Zd>0

Yd(n)xn.

EG

We find
Yd(n) =

∑
k≥0

(
n1
k

)(
n2
k

)
· · ·
(
nd
k

)
,

and, for d > 2 and primes p > 5,

Yd(p
rn) ≡ Yd(pr−1n) (mod p3r).

COR
S 2014

• This generalizes a result of Chan–Cooper–Sica, 2010.
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A conjectural multivariate supercongruence

The coefficients Z(n) of

1

1− (x1 + x2 + x3 + x4) + 27x1x2x3x4
=
∑

n∈Z4
>0

Z(n)xn

satisfy, for p > 5, the multivariate supercongruences

Z(npr) ≡ Z(npr−1) (mod p3r).

CONJ
S 2014

• Here, the diagonal coefficients are the Almkvist–Zudilin numbers

Z(n) =
n∑
k=0

(−3)n−3k
(
n

3k

)(
n+ k

n

)
(3k)!

k!3
,

for which the univariate congruences are still open.
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Short random walks

joint work with:

Jon Borwein Dirk Nuyens James Wan Wadim Zudilin
U. Newcastle, AU K.U.Leuven, BE SUTD, SG U. Newcastle, AU
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Random walks in the plane

d

n steps in the plane
(length 1, random direction)

What is the distance traveled in n steps?

pn(x) probability density

Wn(s) sth moment

W2(1) =
4

π

EG

• Karl Pearson famously asked for
pn(x) in 1905, coining the term
random walk.

pn(x) ≈ 2x

n
e−x

2/n for large n
THM
Rayleigh,

1905
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Long random walks

pn(x) ≈ 2x

n
e−x

2/n for large n
THM
Rayleigh,

1905

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

p7(x)

Wn(1) ≈
√
nπ/2

“The lesson of Lord Rayleigh’s solution is that in open
country the most probable place to find a drunken
man who is at all capable of keeping on his feet is
somewhere near his starting point!

Karl Pearson, 1905 ”
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Densities of short walks

p2

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

p3

0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p4

1 2 3 4

0.1

0.2

0.3

0.4

0.5

p5

1 2 3 4 5

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p6

1 2 3 4 5 6

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p7

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30
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Classical results on the densities

p2(x) =
2

π
√

4− x2
easy

p3(x) = Re

(√
x

π2
K

(√
(x+ 1)3(3− x)

16x

))
G. J. Bennett

1905

p4(x) = ??

...

pn(x) =

∫ ∞
0

xtJ0(xt)J
n
0 (t) dt J. C. Kluyver

1906

10 20 30 40 50

-0.004

-0.003

-0.002

-0.001

0.001

0.002

0.003
n = 4, x = 3/2
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21 / 37



The average distance traveled in two steps

• The average distance in two steps:

W2(1) =

∫ 1

0

∫ 1

0

∣∣e2πix + e2πiy
∣∣dxdy = ?

=

∫ 1

0

∣∣1 + e2πiy
∣∣ dy

=

∫ 1

0
2 cos(πy)dy

=
4

π
≈ 1.27324

• This is the average length of a random arc on a
unit circle.

∣∣1 + e2πiy
∣∣

=
∣∣1 + (cosπy + i sinπy)2

∣∣
= 2 cos(πy)
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The moments of random walks

The sth moment Wn(s) of the density pn:

Wn(s) :=

∫ ∞
0

xspn(x) dx =

∫
[0,1]n

∣∣e2πix1 + . . .+ e2πixn
∣∣s dx

DEF

• On a desktop:

W3(1) ≈ 1.57459723755189365749

W4(1) ≈ 1.79909248

W5(1) ≈ 2.00816

• On a supercomputer: David Bailey, Lawrence Berkeley National Laboratory (256 cores)

W5(1) ≈ 2.0081618

• Hard to evaluate numerically to high precision.
Monte-Carlo integration gives approximations with an asymptotic error of

O(1/
√
N) where N is the number of sample points.

W2(1) = 4
π W3(1) = 1.57459723755189 . . . = ?

Properties and applications of Apéry-like numbers Armin Straub
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The moments of random walks

The sth moment Wn(s) of the density pn:

Wn(s) :=

∫ ∞
0

xspn(x) dx =

∫
[0,1]n

∣∣e2πix1 + . . .+ e2πixn
∣∣s dx

DEF

n s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

2 1.273 2.000 3.395 6.000 10.87 20.00 37.25
3 1.575 3.000 6.452 15.00 36.71 93.00 241.5
4 1.799 4.000 10.12 28.00 82.65 256.0 822.3
5 2.008 5.000 14.29 45.00 152.3 545.0 2037.
6 2.194 6.000 18.91 66.00 248.8 996.0 4186.

W2(1) = 4
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23 / 37



The moments of random walks

The sth moment Wn(s) of the density pn:

Wn(s) :=

∫ ∞
0

xspn(x) dx =

∫
[0,1]n

∣∣e2πix1 + . . .+ e2πixn
∣∣s dx

DEF

n s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

2 1.273 2.000 3.395 6.000 10.87 20.00 37.25
3 1.575 3.000 6.452 15.00 36.71 93.00 241.5
4 1.799 4.000 10.12 28.00 82.65 256.0 822.3
5 2.008 5.000 14.29 45.00 152.3 545.0 2037.
6 2.194 6.000 18.91 66.00 248.8 996.0 4186.

W2(1) = 4
π W3(1) = 1.57459723755189 . . . = ?

Properties and applications of Apéry-like numbers Armin Straub
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The even moments

n s = 0 s = 2 s = 4 s = 6 s = 8 s = 10 Sloane’s

2 1 2 6 20 70 252 A000984

3 1 3 15 93 639 4653 A002893

4 1 4 28 256 2716 31504 A002895

5 1 5 45 545 7885 127905 A169714

6 1 6 66 996 18306 384156 A169715

W3(2k) =
k∑
j=0

(
k

j

)2(2j

j

)
Apéry-like

W4(2k) =
k∑
j=0

(
k

j

)2(2j

j

)(
2(k − j)
k − j

)
Domb numbers

EG

W3(1) =
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)THM
Borwein-
Nuyens-
S-Wan,

2010
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Densities of random walks

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

p2(x)
0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p3(x)
1 2 3 4

0.1

0.2

0.3

0.4

0.5

p4(x)
1 2 3 4 5

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p5(x)

p2(x) =
2

π
√

4− x2
easy

p3(x) =
2
√

3

π

x

(3 + x2)
2F1

(
1
3 ,

2
3

1

∣∣∣∣∣x2
(
9− x2

)2
(3 + x2)3

)
classical
with a spin

p4(x) =
2

π2

√
16− x2
x

Re 3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣∣
(
16− x2

)3
108x4

)
new

BSWZ 2011

p′5(0) =

√
5

40π4
Γ( 1

15)Γ( 2
15)Γ( 4

15)Γ( 8
15) ≈ 0.32993
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Ramanujan-type series for 1/π

4

π
= 1 +

7

4

(
1

2

)3

+
13

42

(
1.3

2.4

)3

+
19

43

(
1.3.5

2.4.6

)3

+ . . .

Based on joint work with:

Mathew Rogers
(University of Montreal)
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Ramanujan’s series for 1/π

4

π
= 1 +

7

4

(
1

2

)3

+
13

42

(
1.3

2.4

)3

+
19

43

(
1.3.5

2.4.6

)3

+ . . .

=

∞∑
n=0

(1/2)3n
n!3

(6n+ 1)
1

4n

8

π
=

∞∑
n=0

(1/2)3n
n!3

(42n+ 5)
1

26n

• Starred in High School Musical,
a 2006 Disney production

Srinivasa Ramanujan
Modular equations and approximations to π
Quart. J. Math., Vol. 45, p. 350–372, 1914
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27 / 37



Ramanujan’s series for 1/π

4

π
= 1 +

7

4

(
1

2

)3

+
13

42

(
1.3

2.4

)3

+
19

43

(
1.3.5

2.4.6

)3

+ . . .

=

∞∑
n=0

(1/2)3n
n!3

(6n+ 1)
1

4n

16

π
=

∞∑
n=0

(1/2)3n
n!3

(42n+ 5)
1

26n

• Starred in High School Musical,
a 2006 Disney production

Srinivasa Ramanujan
Modular equations and approximations to π
Quart. J. Math., Vol. 45, p. 350–372, 1914

Properties and applications of Apéry-like numbers Armin Straub
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Another one of Ramanujan’s series

1

π
=

2
√

2

9801

∞∑
n=0

(4n)!

n!4
1103 + 26390n

3964n

• Used by R. W. Gosper in 1985 to compute
17, 526, 100 digits of π
Correctness of first 3 million digits showed that the series sums to 1/π in the first place.

• First proof of all of Ramanujan’s 17 series for 1/π
by Borwein brothers

Jonathan M. Borwein and Peter B. Borwein
Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity
Wiley, 1987
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Apéry-like numbers and series for 1/π

• Sato observed that series for 1
π can be built from Apéry-like numbers:

For the Domb numbers D(n) =

n∑
k=0

(
n

k

)2(2k

k

)(
2(n− k)

n− k

)
,

8√
3π

=

∞∑
n=0

D(n)
5n+ 1

26n
.

EG
Chan-

Chan-Liu
2003

• Sun offered a $520 bounty for a proof the following series:

520

π
=
∞∑
n=0

1054n+ 233

480n

(
2n

n

) n∑
k=0

(
n

k

)2(2k

n

)
(−1)k82k−n

THM
Rogers-S

2012
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A brief guide to proving series for 1/π

• Suppose we have a sequence an with modular parametrization
∞∑
n=0

an x(τ)n

modular
function

= f(τ)

modular
form

.

• Then: ∞∑
n=0

an(A+Bn)x(τ)n = Af(τ) +B
x(τ)

x′(τ)
f ′(τ)

∞∑
n=0

(1/2)3n
n!3

(42n+ 5)
1

26n
=

16

π

• For τ ∈ Q(
√
−d), x(τ) is an algebraic number.

• f ′(τ) is a quasimodular form.

• Prototypical E2(τ) satisfies τ−2E2

(
− 1

τ

)
− E2(τ) =

6

πiτ
.

FACT

• These are the main ingredients for series for 1/π. Mix and stir.
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Positivity of rational functions

1

1− (x+ y + z + w) + 2(yzw + xzw + xyw + xyz) + 4xyzw

Based on joint work with:

Wadim Zudilin
(University of Newcastle)
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Positivity of rational functions

• A rational function

F (x1, . . . , xd) =
∑

n1,...,nd>0

an1,...,ndx
n1
1 · · ·x

nd
d

is positive if an1,...,nd > 0 for all indices.

The following rational functions are positive.

S(x, y, z) =
1

1− (x+ y + z) + 3
4(xy + yz + zx)

Szegő ’33
Kaluza ’33

Askey–Gasper ’72
S ’08

A(x, y, z) =
1

1− (x+ y + z) + 4xyz

Askey–Gasper ’77
Koornwinder ’78

Ismail–Tamhankar ’79
Gillis–Reznick–Zeilberger ’83

EG

• Both functions are on the boundary of positivity.

• The diagonal coefficients of A are the Franel numbers
n∑
k=0

(
n

k

)3

.
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Positivity of rational functions

The following rational function is positive:

1

1− (x+ y + z + w) + 2(yzw + xzw + xyw + xyz) + 4xyzw
.

CONJ
Kauers-

Zeilberger
2008

• Would imply conjectured positivity of Lewy–Askey rational function

1

1− (x+ y + z + w) + 2
3(xy + xz + xw + yz + yw + zw)

.

Recent proof of non-negativity by Scott and Sokal, 2013

The Kauers–Zeilberger function has diagonal coefficients

dn =

n∑
k=0

(
n

k

)2(2k

n

)2

.

PROP
S-Zudilin

2013
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Positivity of rational functions

• Consider rational functions F = 1/p(x1, . . . , xd) with p a symmetric
polynomial, linear in each variable.

Under what condition(s) is the positivity of F implied by the
positivity of its diagonal?

Q

1
1+x+y has positive diagonal coefficients but is not positive.EG

F positive ⇐⇒ diagonal of F and F |xd=0 are positive?Q

F (x, y) =
1

1 + c1(x+ y) + c2xy
is positive

⇐⇒ diagonal of F and F |xd=0 are positive

THM
S-Zudilin

2013
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Summary and some open problems

• Apéry-like numbers are integer solutions to certain three-term
recurrences
• is the experimental list complete?
• higher-order analogs, Calabi–Yau DEs

• Apéry-like numbers have interesting properties
• modular parametrization; uniform explanation?
• supercongruences; still open in several cases

• Apéry-like numbers occur in interesting places
• moments of planar random walks
• series for 1/π
• positivity of rational functions
• counting points on algebraic varieties
• . . .
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

A. Straub
Multivariate Apéry numbers and supercongruences of rational functions
Preprint, 2014

R. Osburn, B. Sahu, A. Straub
Supercongruences for sporadic sequences
to appear in Proceedings of the Edinburgh Mathematical Society, 2014

A. Straub, W. Zudilin
Positivity of rational functions and their diagonals
to appear in Journal of Approximation Theory (special issue dedicated to Richard Askey), 2014

M. Rogers, A. Straub
A solution of Sun’s $520 challenge concerning 520/π
International Journal of Number Theory, Vol. 9, Nr. 5, 2013, p. 1273-1288

J. Borwein, A. Straub, J. Wan, W. Zudilin (appendix by D. Zagier)
Densities of short uniform random walks
Canadian Journal of Mathematics, Vol. 64, Nr. 5, 2012, p. 961-990
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