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A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

1, 5, 73, 1445, 33001, 819005, 21460825, . . .
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Apéry numbers and the irrationality of ζ(3)

• The Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

satisfy

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.

ζ(3) =
∑∞

n=1
1
n3 is irrational.THM

Apéry ’78

The same recurrence is satisfied by the “near”-integers

B(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)2
 n∑
j=1

1

j3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
 .

Then, B(n)
A(n) → ζ(3). But too fast for ζ(3) to be rational.

proof
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Apéry-like numbers

• Recurrence for Apéry numbers is the case (a, b, c) = (17, 5, 1) of

(n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − cn3un−1.

Are there other tuples (a, b, c) for which the solution defined by
u−1 = 0, u0 = 1 is integral?

Q

• Essentially, only 14 tuples (a, b, c) found. (Almkvist–Zudilin)

• 4 hypergeometric and 4 Legendrian solutions
• 6 sporadic solutions

• Similar (and intertwined) story for:
• (n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1 (Beukers, Zagier)

• (n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − n(cn2 + d)un−1 (Cooper)
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Apéry-like numbers

• Hypergeometric and Legendrian solutions have generating functions

3F2

( 1
2 , α, 1− α

1, 1

∣∣∣∣4Cαz) , 1

1− Cαz
2F1

(
α, 1− α

1

∣∣∣∣ −Cαz1− Cαz

)2

,

with α = 1
2 ,

1
3 ,

1
4 ,

1
6 and Cα = 24, 33, 26, 24 · 33.

• The six sporadic solutions are:

(a, b, c) A(n)

(7, 3, 81)
∑
k(−1)k3n−3k

(
n
3k

)(
n+k
n

) (3k)!
k!3

(11, 5, 125)
∑
k(−1)k

(
n
k

)3 ((4n−5k−1
3n

)
+
(
4n−5k

3n

))
(10, 4, 64)

∑
k

(
n
k

)2(2k
k

)(
2(n−k)
n−k

)
(12, 4, 16)

∑
k

(
n
k

)2(2k
n

)2
(9, 3,−27)

∑
k,l

(
n
k

)2(n
l

)(
k
l

)(
k+l
n

)
(17, 5, 1)

∑
k

(
n
k

)2(n+k
n

)2
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Modularity of Apéry-like numbers

• The Apéry numbers 1, 5, 73, 1145, . . .

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

satisfy

η7(2τ)η7(3τ)

η5(τ)η5(6τ)

modular form

=
∑
n>0

A(n)

(
η(τ)η(6τ)

η(2τ)η(3τ)

)12n

modular function

.

Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

FACT

• Context: f(τ) modular form of weight k
x(τ) modular function
y(x) such that y(x(τ)) = f(τ)

Then y(x) satisfies a linear differential equation of order k + 1.
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Supercongruences for Apéry numbers

• The Apéry numbers satisfy the supercongruence (p > 5)

A(mpr) ≡ A(mpr−1) mod p3r.
Chowla–Cowles–Cowles ’80

Gessel ’82
Beukers, Coster ’85, ’88

Simple combinatorics proves the congruence(
2p

p

)
=
∑
k

(
p

k

)(
p

p− k

)
≡ 1 + 1 mod p2.

For p > 5, Wolstenholme’s congruence shows that, in fact,(
2p

p

)
≡ 2 mod p3.

EG
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Supercongruences for Apéry-like numbers

• Conjecturally, supercongruences like

A(mpr) ≡ A(mpr−1) mod p3r

hold for all Apéry-like numbers. Osburn–Sahu ’09

• Current state of affairs for the six sporadic sequences from earlier:

(a, b, c) A(n)

(7, 3, 81)
∑
k(−1)k3n−3k

(
n
3k

)(
n+k
n

) (3k)!
k!3 open!!

(11, 5, 125)
∑
k(−1)k

(
n
k

)3 ((4n−5k−1
3n

)
+
(
4n−5k

3n

))
Osburn–Sahu–S ’13

(10, 4, 64)
∑
k

(
n
k

)2(2k
k

)(
2(n−k)
n−k

)
Osburn–Sahu ’11

(12, 4, 16)
∑
k

(
n
k

)2(2k
n

)2
Osburn–Sahu–S ’13

(9, 3,−27)
∑
k,l

(
n
k

)2(n
l

)(
k
l

)(
k+l
n

)
open

(17, 5, 1)
∑
k

(
n
k

)2(n+k
n

)2
Beukers, Coster ’87-’88
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Sources for (non-super) congruences

a(npr) ≡ a(npr−1) mod pr (C)

• a(n) is realizable if there is some map T : X → X such that

a(n) = #{x ∈ X : Tnx = x}. “points of period n”

In that case, (C) holds. Everest–van der Poorten–Puri–Ward ’02, Arias de Reyna ’05

In fact, up to a positivity condition, (C) characterizes realizability.

• Let Λ(x) ∈ Zp[x±11 , . . . , x±1d ] be a Laurent polynomial.
If the Newton polyhedron of Λ contains the origin as its only interior
point, then a(n) = ct Λ(x)n satisfies (C). van Straten–Samol ’09

• If a(1) = 1, then (C) is equivalent to exp

( ∞∑
n=1

a(n)

n
Tn

)
∈ Z[[T ]].

This is a natural condition in formal group theory.
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Apéry numbers as diagonals

• Given a series

F (x1, . . . , xd) =
∑

n1,...,nd>0

a(n1, . . . , nd)x
n1
1 · · ·x

nd
d ,

its diagonal coefficients are the coefficients a(n, . . . , n).

The Apéry numbers are the diagonal coefficients of

1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
.

THM
S 2013
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The Apéry numbers are the diagonal coefficients of

1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
.

THM
S 2013

• Previously known: they are also the diagonal of Christol, ’84

1

(1− x1) [(1− x2)(1− x3)(1− x4)(1− x5)− x1x2x3]
.

• Such identities are routine to prove, but much harder to discover.
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1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
.

THM
S 2013

• Univariate generating function:

∑
n>0

A(n)xn =
17− x− z

4
√

2(1 + x+ z)3/2
3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣− 1024x

(1− x+ z)4

)
,

where z =
√

1− 34x+ x2.
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Apéry numbers as diagonals

• Given a series

F (x1, . . . , xd) =
∑

n1,...,nd>0

a(n1, . . . , nd)x
n1
1 · · ·x

nd
d ,

its diagonal coefficients are the coefficients a(n, . . . , n).

The Apéry numbers are the diagonal coefficients of

1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
.

THM
S 2013

• Well-developed theory of multivariate asymptotics e.g., Pemantle–Wilson

• Such diagonals are algebraic modulo pr. Furstenberg, Deligne ’67, ’84

Automatically (pun intended) leads to congruences such as

A(n) ≡

{
1 mod 8, if n even,

5 mod 8, if n odd.
Chowla–Cowles–Cowles ’80

Rowland–Yassawi ’13
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Multivariable supercongruences

• Denote with A(n) = A(n1, n2, n3, n4) the coefficients of

1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
.

Let n = (n1, n2, n3, n4) ∈ Z4. For primes p > 5,

A(npr) ≡ A(npr−1) mod p3r.

THM
S 2013
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.

Let n = (n1, n2, n3, n4) ∈ Z4. For primes p > 5,

A(npr) ≡ A(npr−1) mod p3r.

THM
S 2013

• Note that if ζp = e2πi/p
∑
n>0

a(n)xn = F (x),

then ∑
n>0

a(pn)xpn =
1

p

p−1∑
k=0

F (ζkpx).

• Hence, both A(npr) and A(npr−1) have rational generating function.
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THM
S 2013

• By MacMahon’s Master Theorem,

A(n) =
∑
k∈Z

(
n1
k

)(
n3
k

)(
n1 + n2 − k

n1

)(
n3 + n4 − k

n3

)
.

• Because A(n− 1) = A(−n,−n,−n,−n), we also have

A(mpr − 1) ≡ A(mpr−1 − 1) mod p3r. Beukers ’85
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Further examples

• The Franel numbers

F (n) =

n∑
k=0

(
n

k

)3

are the diagonal coefficients of both

1

(1− x1)(1− x2)(1− x3)− x1x2x3
,

1

1− (x1 + x2 + x3) + 4x1x2x3
.

• The multivariate supercongruences

F (npr) ≡ F (npr−1) mod p3r

appear to hold in both cases. Open in the second case.
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Some of many open problems

• Supercongruences for all Apéry-like numbers
• proof for all of them
• uniform explanation
• multivariable extensions

• Apéry-like numbers as diagonals
• find minimal rational functions
• extend supercongruences
• any structure?

• Many further questions remain.
• is the known list complete?
• higher-order analogs, Calabi–Yau DEs
• reason for modularity
• modular supercongruences Beukers ’87, Ahlgren–Ono ’00

A

(
p− 1

2

)
≡ a(p) mod p2,

∞∑
n=1

a(n)qn = η4(2τ)η4(4τ)

• q-analogs
• . . .
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

A. Straub
Multivariate Apéry numbers and supercongruences of rational functions
Preprint, 2014

R. Osburn, B. Sahu, A. Straub
Supercongruences for sporadic sequences
Preprint, 2013

A. Straub, W. Zudilin
Positivity of rational functions and their diagonals
Preprint, 2013
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Fuller version of main result

Let λ = (λ1, . . . , λ`) ∈ Z`>0 with d = λ1 + . . . + λ`, and set
s(j) = λ1 + . . .+ λj−1. Define Aλ(n) by∏̀

j=1

1−
λj∑
r=1

xs(j)+r

− x1x2 · · ·xd
−1 =

∑
n∈Zd

>0

Aλ(n)xn.

• If ` > 2, then, for all primes p and integers r > 1,

Aλ(npr) ≡ Aλ(npr−1) mod p2r.

• If ` > 2 and max(λ1, . . . , λ`) 6 2, then, for primes p > 5
and integers r > 1,

Aλ(npr) ≡ Aλ(npr−1) mod p3r.

THM
S 2014
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