Multivariate Apéry numbers and supercongruences of rational functions

Recent Developments in Number Theory AMS Spring Central Sectional Meeting, Lubbock

Armin Straub

April 13, 2014

University of Illinois at Urbana-Champaign

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$$

 $1, 5, 73, 1445, 33001, 819005, 21460825, \ldots$

Apéry numbers and the irrationality of $\zeta(3)$

• The Apéry numbers $A(n) = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2$ satisfy

$$(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}$$

Apéry numbers and the irrationality of $\zeta(3)$

 The Apéry numbers $1, 5, 73, 1445, \ldots$ $A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$ satisfy

$$(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}.$$

THM
$$\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$$
 is irrational.

proof The same recurrence is satisfied by the "near"-integers $B(n) = \sum_{k=0}^{n} {\binom{n}{k}}^2 {\binom{n+k}{k}}^2 \left(\sum_{i=1}^{n} \frac{1}{j^3} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^3 {\binom{n}{m}} {\binom{n+m}{m}}}\right).$ Then, $\frac{B(n)}{A(n)} \to \zeta(3)$. But too fast for $\zeta(3)$ to be rational.

• Recurrence for Apéry numbers is the case (a, b, c) = (17, 5, 1) of

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - cn^3 u_{n-1}.$$

Q Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral?

• Recurrence for Apéry numbers is the case (a,b,c)=(17,5,1) of

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - cn^3 u_{n-1}.$$

Q Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral?

• Essentially, only 14 tuples (a, b, c) found.

(Almkvist-Zudilin)

- 4 hypergeometric and 4 Legendrian solutions
- 6 sporadic solutions

• Recurrence for Apéry numbers is the case (a,b,c)=(17,5,1) of

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - cn^3 u_{n-1}.$$

Q Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral?

• Essentially, only 14 tuples (a, b, c) found.

• 4 hypergeometric and 4 Legendrian solutions

- 6 sporadic solutions
- Similar (and intertwined) story for:

•
$$(n+1)^2 u_{n+1} = (an^2 + an + b)u_n - cn^2 u_{n-1}$$
 (Beukers, Zagier,

•
$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - n(cn^2 + d)u_{n-1}$$
 (Cooper)

(Almkvist-Zudilin)

• Hypergeometric and Legendrian solutions have generating functions

$${}_{3}F_{2}\left(\begin{array}{c}\frac{1}{2},\alpha,1-\alpha\\1,1\end{array}\middle|4C_{\alpha}z\right),\qquad\frac{1}{1-C_{\alpha}z}{}_{2}F_{1}\left(\begin{array}{c}\alpha,1-\alpha\\1\end{array}\middle|\frac{-C_{\alpha}z}{1-C_{\alpha}z}\right)^{2},$$

with $\alpha = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}$ and $C_{\alpha} = 2^4, 3^3, 2^6, 2^4 \cdot 3^3$.

• The six sporadic solutions are:

(a,b,c)	A(n)
(7, 3, 81)	$\sum_{k} (-1)^{k} 3^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^{3}}$
(11, 5, 125)	$\left \sum_{k} (-1)^{k} {\binom{n}{k}}^{3} \left({\binom{4n-5k-1}{3n}} + {\binom{4n-5k}{3n}} \right) \right $
(10, 4, 64)	$\sum_k {\binom{n}{k}}^2 {\binom{2k}{k}} {\binom{2(n-k)}{n-k}}$
(12, 4, 16)	$\sum_{k} {\binom{n}{k}}^2 {\binom{2k}{n}}^2$
(9, 3, -27)	$\sum_{k,l} {\binom{n}{k}}^2 {\binom{n}{l}} {\binom{k}{l}} {\binom{k+l}{n}}$
(17, 5, 1)	$\sum_{k} {\binom{n}{k}}^2 {\binom{n+k}{n}}^2$

• The Apéry numbers

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$$
satisfy

$$\frac{\eta^{7}(2\tau)\eta^{7}(3\tau)}{\eta^{5}(\tau)\eta^{5}(6\tau)} = \sum_{n \ge 0} A(n) \left(\frac{\eta(\tau)\eta(6\tau)}{\eta(2\tau)\eta(3\tau)}\right)^{12n}.$$

modular form

modular function

• The Apéry numbers

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$$
satisfy

$$\frac{\eta^{7}(2\tau)\eta^{7}(3\tau)}{\eta^{5}(\tau)\eta^{5}(6\tau)} = \sum_{n \ge 0} A(n) \underbrace{\left(\frac{\eta(\tau)\eta(6\tau)}{\eta(2\tau)\eta(3\tau)}\right)^{12n}}_{\text{modular form}}.$$

FACT Not at all evidently, such a modular parametrization exists for all known Apéry-like numbers!

• Context: $f(\tau)$ modular form of weight k $x(\tau)$ modular function y(x) such that $y(x(\tau)) = f(\tau)$

Then y(x) satisfies a linear differential equation of order k + 1.

Multivariate Apéry numbers and supercongruences of rational functions

The Apéry numbers satisfy the supercongruence

$$(p \ge 5)$$

 $A(mp^r) \equiv A(mp^{r-1}) \mod p^{3r}.$

Chowla–Cowles–Cowles '80 Gessel '82 Beukers, Coster '85, '88 The Apéry numbers satisfy the supercongruence

 $A(mp^r) \equiv A(mp^{r-1}) \mod p^{3r}.$

$$(p \ge 5)$$

Chowla–Cowles–Cowles '80 Gessel '82 Beukers, Coster '85, '88

EG Simple combinatorics proves the congruence

$$\binom{2p}{p} = \sum_{k} \binom{p}{k} \binom{p}{p-k} \equiv 1+1 \mod p^2.$$

For $p \ge 5$, Wolstenholme's congruence shows that, in fact,

$$\binom{2p}{p} \equiv 2 \mod p^3.$$

Conjecturally, supercongruences like

$$A(mp^r) \equiv A(mp^{r-1}) \mod p^{3r}$$

hold for all Apéry-like numbers.

- Osburn–Sahu '09
- Current state of affairs for the six sporadic sequences from earlier:

(a,b,c)	A(n)	
(7, 3, 81)	$\sum_{k} (-1)^k 3^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^3}$	open!!
(11, 5, 125)	$\sum_{k} (-1)^k \binom{n}{k}^3 \left(\binom{4n-5k-1}{3n} + \binom{4n-5k}{3n} \right)$	Osburn–Sahu–S '13
(10, 4, 64)	$\sum_{k} {\binom{n}{k}}^{2} {\binom{2k}{k}} {\binom{2(n-k)}{n-k}}$	Osburn–Sahu '11
(12, 4, 16)	$\sum_{k} {\binom{n}{k}}^2 {\binom{2k}{n}}^2$	Osburn–Sahu–S '13
(9,3,-27)	$\sum_{k,l} {\binom{n}{k}}^2 {\binom{n}{l}} {\binom{k}{l}} {\binom{k+l}{n}}$	open
(17, 5, 1)	$\sum_k {\binom{n}{k}}^2 {\binom{n+k}{n}}^2$	Beukers, Coster '87-'88

Sources for (non-super) congruences

$$a(np^r) \equiv a(np^{r-1}) \pmod{p^r} \tag{C}$$

• a(n) is realizable if there is some map $T: X \to X$ such that

$$a(n) = #\{x \in X : T^n x = x\}.$$
 "points of period n'

In that case, (C) holds. Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05 In fact, up to a positivity condition, (C) characterizes realizability.

$$a(np^r) \equiv a(np^{r-1}) \pmod{p^r} \tag{C}$$

• a(n) is realizable if there is some map $T: X \to X$ such that

$$a(n) = \#\{x \in X : T^n x = x\}.$$
 "points of period n'

In that case, (C) holds. Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05 In fact, up to a positivity condition, (C) characterizes realizability.

• Let $\Lambda(x) \in \mathbb{Z}_p[x_1^{\pm 1}, \dots, x_d^{\pm 1}]$ be a Laurent polynomial. If the Newton polyhedron of Λ contains the origin as its only interior point, then $a(n) = \operatorname{ct} \Lambda(x)^n$ satisfies (C).

$$a(np^r) \equiv a(np^{r-1}) \pmod{p^r} \tag{C}$$

• a(n) is realizable if there is some map $T: X \to X$ such that

$$a(n) = #\{x \in X : T^n x = x\}.$$
 "points of period n

In that case, (C) holds. Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05 In fact, up to a positivity condition, (C) characterizes realizability.

• Let $\Lambda(x) \in \mathbb{Z}_p[x_1^{\pm 1}, \dots, x_d^{\pm 1}]$ be a Laurent polynomial. If the Newton polyhedron of Λ contains the origin as its only interior point, then $a(n) = \operatorname{ct} \Lambda(x)^n$ satisfies (C).

If
$$a(1) = 1$$
, then (C) is equivalent to $\exp\left(\sum_{n=1}^{\infty} \frac{a(n)}{n} T^n\right) \in \mathbb{Z}[[T]].$
This is a natural condition in formal group theory

This is a natural condition in formal group theory.

Multivariate Apéry numbers and supercongruences of rational functions

$$F(x_1, \dots, x_d) = \sum_{n_1, \dots, n_d \ge 0} a(n_1, \dots, n_d) x_1^{n_1} \cdots x_d^{n_d},$$

its diagonal coefficients are the coefficients $a(n, \ldots, n)$.

The Apéry numbers are the diagonal coefficients of $\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}.$

$$F(x_1, \dots, x_d) = \sum_{n_1, \dots, n_d \ge 0} a(n_1, \dots, n_d) x_1^{n_1} \cdots x_d^{n_d},$$

its diagonal coefficients are the coefficients $a(n, \ldots, n)$.

THM S 2013 The Apéry numbers are the diagonal coefficients of $\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}.$

- Previously known: they are also the diagonal of $\frac{1}{(1-x_1)\left[(1-x_2)(1-x_3)(1-x_4)(1-x_5)-x_1x_2x_3\right]}.$
- Such identities are routine to prove, but much harder to discover.

$$F(x_1, \dots, x_d) = \sum_{n_1, \dots, n_d \ge 0} a(n_1, \dots, n_d) x_1^{n_1} \cdots x_d^{n_d},$$

its diagonal coefficients are the coefficients $a(n, \ldots, n)$.

THM S 2013 The Apéry numbers are the diagonal coefficients of $\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}.$

• Univariate generating function:

$$\sum_{n \ge 0} A(n)x^n = \frac{17 - x - z}{4\sqrt{2}(1 + x + z)^{3/2}} \, {}_3F_2\left(\begin{array}{c} \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ 1, 1 \end{array} \middle| -\frac{1024x}{(1 - x + z)^4} \right),$$

where
$$z = \sqrt{1 - 34x + x^2}$$
.

Multivariate Apéry numbers and supercongruences of rational functions

$$F(x_1, \dots, x_d) = \sum_{n_1, \dots, n_d \ge 0} a(n_1, \dots, n_d) x_1^{n_1} \cdots x_d^{n_d},$$

its diagonal coefficients are the coefficients $a(n, \ldots, n)$.

THM The Apéry numbers are the diagonal coefficients of S 2013 $\overline{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}$

- Well-developed theory of multivariate asymptotics
- Such diagonals are algebraic modulo p^r. Furstenberg, Deligne '67, '84 Automatically (pun intended) leads to congruences such as

$$A(n) \equiv \begin{cases} 1 \mod 8, & \text{if } n \text{ even,} \\ 5 \mod 8, & \text{if } n \text{ odd.} \end{cases}$$
Chowla-Cowles-Cowles '80
Rowland-Yassawi '13

e.g., Pemantle-Wilson

• Denote with $A(\boldsymbol{n}) = A(n_1, n_2, n_3, n_4)$ the coefficients of

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}$$

THM
s 2013 Let
$$\boldsymbol{n} = (n_1, n_2, n_3, n_4) \in \mathbb{Z}^4$$
. For primes $p \ge 5$,
 $A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \mod p^{3r}$.

• Denote with $A(\boldsymbol{n}) = A(n_1,n_2,n_3,n_4)$ the coefficients of

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}.$$

THM
s 2013 Let
$$\boldsymbol{n} = (n_1, n_2, n_3, n_4) \in \mathbb{Z}^4$$
. For primes $p \ge 5$,
 $A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \mod p^{3r}$.

- Note that if $\sum_{n \ge 0} a(n)x^n = F(x), \qquad \qquad \zeta_p = e^{2\pi i/p}$ then $\sum_{n \ge 0} a(pn)x^{pn} = \frac{1}{p} \sum_{k=0}^{p-1} F(\zeta_p^k x).$
- Hence, both $A(np^r)$ and $A(np^{r-1})$ have rational generating function.

• Denote with $A(\boldsymbol{n}) = A(n_1,n_2,n_3,n_4)$ the coefficients of

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}$$

THM
_{5 2013} Let
$$\boldsymbol{n} = (n_1, n_2, n_3, n_4) \in \mathbb{Z}^4$$
. For primes $p \ge 5$,
 $A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \mod p^{3r}$.

• By MacMahon's Master Theorem,

$$A(\boldsymbol{n}) = \sum_{k \in \mathbb{Z}} \binom{n_1}{k} \binom{n_3}{k} \binom{n_1 + n_2 - k}{n_1} \binom{n_3 + n_4 - k}{n_3}.$$

• Denote with $A(\boldsymbol{n}) = A(n_1,n_2,n_3,n_4)$ the coefficients of

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}$$

THM
_{5 2013} Let
$$\boldsymbol{n} = (n_1, n_2, n_3, n_4) \in \mathbb{Z}^4$$
. For primes $p \ge 5$,
 $A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \mod p^{3r}$.

By MacMahon's Master Theorem,

$$A(\boldsymbol{n}) = \sum_{k \in \mathbb{Z}} \binom{n_1}{k} \binom{n_3}{k} \binom{n_1 + n_2 - k}{n_1} \binom{n_3 + n_4 - k}{n_3}.$$

• Because A(n-1) = A(-n, -n, -n, -n), we also have

$$A(mp^r - 1) \equiv A(mp^{r-1} - 1) \mod p^{3r}.$$
 Beukers '85

• The Franel numbers

$$F(n) = \sum_{k=0}^{n} \binom{n}{k}^{3}$$

are the diagonal coefficients of both

$$\frac{1}{(1-x_1)(1-x_2)(1-x_3)-x_1x_2x_3}, \quad \frac{1}{1-(x_1+x_2+x_3)+4x_1x_2x_3}.$$

• The Franel numbers

$$F(n) = \sum_{k=0}^{n} \binom{n}{k}^{3}$$

are the diagonal coefficients of both

$$\frac{1}{(1-x_1)(1-x_2)(1-x_3)-x_1x_2x_3}, \quad \frac{1}{1-(x_1+x_2+x_3)+4x_1x_2x_3}.$$

• The multivariate supercongruences

$$F(\boldsymbol{n}p^r) \equiv F(\boldsymbol{n}p^{r-1}) \mod p^{3r}$$

appear to hold in both cases. Open in the second case.

- Supercongruences for all Apéry-like numbers
 - proof for all of them
 - uniform explanation
 - multivariable extensions
- Apéry-like numbers as diagonals
 - find minimal rational functions
 - extend supercongruences
 - any structure?
- Many further questions remain.
 - is the known list complete?
 - higher-order analogs, Calabi-Yau DEs
 - reason for modularity
 - modular supercongruences

Beukers '87, Ahlgren-Ono '00

$$A\left(\frac{p-1}{2}\right) \equiv a(p) \pmod{p^2}, \qquad \sum_{n=1}^{\infty} a(n)q^n = \eta^4(2\tau)\eta^4(4\tau)$$

 \bullet q-analogs

• . . .

THANK YOU!

Slides for this talk will be available from my website: http://arminstraub.com/talks

A. Straub Multivariate Apéry numbers and supercongruences of rational functions Preprint, 2014

R. Osburn, B. Sahu, A. Straub Supercongruences for sporadic sequences Preprint, 2013

A. Straub, W. Zudilin Positivity of rational functions and their diagonals Preprint, 2013