Positivity of rational functions and their diagonals

Special Functions and Their Applications AMS Fall Eastern Sectional Meeting, Halifax

Armin Straub

October 18, 2014

University of Illinois at Urbana–Champaign

Based on joint work with:

Wadim Zudilin University of Newcastle • A rational function

$$
F(x_1, ..., x_d) = \sum_{n_1, ..., n_d \ge 0} a_{n_1, ..., n_d} x_1^{n_1} \cdots x_d^{n_d}
$$

is positive if $a_{n_1,...,n_d} > 0$ for all indices.

• A rational function

$$
F(x_1, ..., x_d) = \sum_{n_1, ..., n_d \ge 0} a_{n_1, ..., n_d} x_1^{n_1} \cdots x_d^{n_d}
$$

is positive if $a_{n_1,...,n_d} > 0$ for all indices.

EG
$$
\frac{1}{1-x}
$$
 and $\frac{1}{(1-x)(1-y)}$ are positive.

• A rational function

$$
F(x_1, ..., x_d) = \sum_{n_1, ..., n_d \ge 0} a_{n_1, ..., n_d} x_1^{n_1} \cdots x_d^{n_d}
$$

is **positive** if $a_{n_1,...,n_d} > 0$ for all indices.

EG
$$
\frac{1}{1-x}
$$
 and $\frac{1}{(1-x)(1-y)}$ are positive.

$$
\frac{\text{EG}}{\frac{\text{Szeg6}}{1933}} \quad \frac{1}{(1-x)(1-y)+(1-y)(1-z)+(1-z)(1-x)} \, \, \text{is positive.}
$$

- Szegő's proof builds on an integral of a product of Bessel functions. "the used tools, however, are disproportionate to the simplicity of the statement"
- Elementary proof by Kaluza ('33)
- Askey–Gasper ('72) use integral of product of Legendre functions.
- Ismail–Tamhankar ('79) systematize Kaluza's approach by using MacMahon's Master Theorem.

$$
\frac{1}{(1-x)(1-y)+(1-y)(1-z)+(1-z)(1-x)} = \sum_{k,m,n} A(k,m,n)x^k y^m z^n
$$

- Friedrichs and Lewy conjectured positivity of $A(k, m, n)$.
- Wanted to show convergence of finite difference approximations to

$$
\left(\frac{\partial}{\partial x}\frac{\partial}{\partial x} + \frac{\partial}{\partial x}\frac{\partial}{\partial z} + \frac{\partial}{\partial y}\frac{\partial}{\partial z}\right)u(x, y, z) = 0,
$$

which transforms to the 2D wave equation.

/ 17

$$
\frac{1}{(1-x)(1-y)+(1-y)(1-z)+(1-z)(1-x)} = \sum_{k,m,n} A(k,m,n)x^k y^m z^n
$$

- Friedrichs and Lewy conjectured positivity of $A(k, m, n)$.
- Wanted to show convergence of finite difference approximations to

$$
\left(\frac{\partial}{\partial x}\frac{\partial}{\partial x} + \frac{\partial}{\partial x}\frac{\partial}{\partial z} + \frac{\partial}{\partial y}\frac{\partial}{\partial z}\right)u(x, y, z) = 0,
$$

which transforms to the 2D wave equation.

• With $\partial/\partial x$ replaced by Δ_k , $\Delta a(k) = a(k) - a(k-1)$

$$
(\Delta_k \Delta_m + \Delta_k \Delta_n + \Delta_m \Delta_n)A(k, m, n) = 0.
$$

• Szegő also showed that

$$
\frac{1}{\sum_{i=1}^4 \prod_{j\neq i} (1-x_j)} = \frac{1}{(1-x_2)(1-x_3)(1-x_4) + \cdots + (1-x_1)(1-x_2)(1-x_3)}
$$

is positive (and extends that to any number of variables).

• Szegő also showed that

$$
\frac{1}{\sum_{i=1}^4 \prod_{j\neq i} (1-x_j)} = \frac{1}{(1-x_2)(1-x_3)(1-x_4) + \cdots + (1-x_1)(1-x_2)(1-x_3)}
$$

is positive (and extends that to any number of variables).

• The Lewy–Askey problem asks for positivity of

$$
\frac{1}{\sum_{1 \leq i < j \leq 4} (1-x_i)(1-x_j)} = \frac{1}{(1-x_1)(1-x_2) + \cdots + (1-x_3)(1-x_4)}.
$$

• Szegő also showed that

$$
\frac{1}{\sum_{i=1}^4 \prod_{j\neq i} (1-x_j)} = \frac{1}{(1-x_2)(1-x_3)(1-x_4) + \cdots + (1-x_1)(1-x_2)(1-x_3)}
$$

is positive (and extends that to any number of variables).

• The Lewy–Askey problem asks for positivity of

$$
\frac{1}{\sum_{1 \le i < j \le 4} (1-x_i)(1-x_j)} = \frac{1}{(1-x_1)(1-x_2) + \cdots + (1-x_3)(1-x_4)}.
$$

- Non-negativity proved by a very general result of Scott–Sokal ('13):
	- 1 $\frac{1}{\det(\sum (1 - x_i)A_i)}$ is non-negative if $A_i \geqslant 0$ are hermitian matrices.
	- For the Lewy-Askey problem:

$$
A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad A_4 = \begin{bmatrix} 1 & e^{-i\pi/3} \\ e^{i\pi/3} & 1 \end{bmatrix}.
$$

$$
\frac{1}{1 - (x + y + z) + 4xyz}
$$

Askey–Gasper '77 Koornwinder '78 Ismail–Tamhankar '79 Gillis–Reznick–Zeilberger '83 ¹

$$
\frac{1}{1 - (x + y + z) + 4xyz}
$$

Askey–Gasper '77 Koornwinder '78 Ismail–Tamhankar '79 Gillis–Reznick–Zeilberger '83 ¹

implies positivity, for any $\varepsilon > 0$, of

$$
\frac{1}{1-(x+y+z)+(4-\varepsilon)xyz}
$$

Askey–Gasper '77 Koornwinder '78 Ismail–Tamhankar '79
Gillis–Reznick–Zeilberger '83 Gillis–Reznick–Zeilberger '83 ¹

implies positivity, for any $\varepsilon > 0$, of

$$
\text{for } \beta \geqslant (\sqrt{17}-3)/2 \approx 0.56
$$

$$
\frac{1}{1 - (x + y + z) + (4 - \varepsilon)xyz}
$$

 $(1 - (x + y + z) + 4xyz)^{\beta}$

Askey–Gasper '77 Koornwinder '78 Ismail–Tamhankar '79
Gillis–Reznick–Zeilberger '83 Gillis–Reznick–Zeilberger '83 ¹

 $\sqrt{17} - 3)/2 \approx 0.56$

implies positivity, for any $\varepsilon > 0$, of

$$
\frac{1}{1-(x+y+z)+(4-\varepsilon)xyz}
$$

 $(1 - (x + y + z) + 4xyz)^{\beta}$

• If $F(x_1, \ldots, x_n)$ is positive, so is, for $0 \leq p \leq 1$,

Gillis–Reznick–Zeilberger '83 S '08 Kauers–Zeilberger '08

$$
T_p(F) = \frac{F\left(\frac{px_1}{1-(1-p)x_1}, \dots, \frac{px_n}{1-(1-p)x_n}\right)}{(1-(1-p)x_1)\cdots(1-(1-p)x_n)}.
$$

Askey–Gasper '77 Koornwinder '78 Ismail–Tamhankar '79
Gillis–Reznick–Zeilberger '83 Gillis–Reznick–Zeilberger '83 ¹

implies positivity, for any
$$
\varepsilon > 0
$$
, of $\log \beta \ge (\sqrt{17} - 3)/2 \approx 0.56$

$$
\frac{1}{1 - (x + y + z) + (4 - \varepsilon)xyz}
$$

 $(1 - (x + y + z) + 4xyz)^{\beta}$

• If $F(x_1, \ldots, x_n)$ is positive, so is, for $0 \leqslant p \leqslant 1$,

Gillis–Reznick–Zeilberger '83 S '08 Kauers–Zeilberger '08

$$
T_p(F) = \frac{F\left(\frac{px_1}{1-(1-p)x_1}, \dots, \frac{px_n}{1-(1-p)x_n}\right)}{(1-(1-p)x_1)\cdots(1-(1-p)x_n)}.
$$

EG
$$
T_{1/2} \frac{1}{1-(x+y+z)+4xyz} = \frac{1}{1-(x+y+z)+\frac{3}{4}(xy+yz+zx)}
$$

The case of three variables

6 / 17

CONJ For any
$$
d \ge 4
$$
, the following function is non-negative:
\n
$$
\frac{1}{1 - (x_1 + x_2 + \dots + x_d) + d! x_1 x_2 \cdots x_d}
$$

CONJ For any
$$
d \ge 4
$$
, the following function is non-negative:
\n^{G-R-Z}
\n¹
\n
$$
\frac{1}{1 - (x_1 + x_2 + \dots + x_d) + d! x_1 x_2 \cdots x_d}
$$

Suffices to prove that the diagonal coefficients are non-negative. THM
G-R-Z

CONJ For any
$$
d \ge 4
$$
, the following function is non-negative:
\n^{G-R-Z}
\n¹
\n
$$
\frac{1}{1 - (x_1 + x_2 + \dots + x_d) + d! x_1 x_2 \cdots x_d}
$$

Suffices to prove that the diagonal coefficients are non-negative. THM
G-R-Z

CONJ For any
$$
d \ge 4
$$
, the following function is non-negative:
\n^{G-R-Z}
\n¹
\n
$$
\frac{1}{1 - (x_1 + x_2 + \dots + x_d) + d! x_1 x_2 \cdots x_d}
$$

THM Suffices to prove that the diagonal coefficients are non-negative. G-R-Z

- False for $d = 2, 3$.
- Kauers proved that diagonal is non-negative for $d = 4, 5, 6$.

7 / 17

CONJ For any
$$
d \ge 4
$$
, the following function is non-negative:
\n^{G-R-Z}
\n¹
\n
$$
\frac{1}{1 - (x_1 + x_2 + \dots + x_d) + d! x_1 x_2 \cdots x_d}
$$

THM Suffices to prove that the diagonal coefficients are non-negative. G-R-Z

- False for $d = 2, 3$.
- Kauers proved that diagonal is non-negative for $d = 4, 5, 6$.
- With c in place of d!, the coefficient of $x_1 \cdots x_d$ is $d! c$.

[Positivity of rational functions and their diagonals](#page-0-0) and their diagonals Armin Straub Armin Straub Armin Straub

CONJ For any
$$
d \ge 4
$$
, the following function is non-negative:
\n^{G-R-Z}
\n³³
\n
$$
\frac{1}{1 - (x_1 + x_2 + \dots + x_d) + d! x_1 x_2 \cdots x_d}
$$

THM Suffices to prove that the diagonal coefficients are non-negative. G-R-Z

- False for $d = 2, 3$.
- Kauers proved that diagonal is non-negative for $d = 4, 5, 6$.
- With c in place of d!, the coefficient of $x_1 \cdots x_d$ is $d! c$.
- Diagonal coefficients eventually positive if $c < (d-1)^{d-1}$?

A conjecture and its diagonal

• Would imply conjectured positivity of Lewy–Askey rational function

1 $1 - (x + y + z + w) + \frac{2}{3}(xy + xz + xw + yz + yw + zw)$.

Recent proof of non-negativity by Scott and Sokal, 2013

• Would imply conjectured positivity of Lewy–Askey rational function

$$
\frac{1}{1-(x+y+z+w)+\frac{2}{3}(xy+xz+xw+yz+yw+zw)}.
$$

Recent proof of non-negativity by Scott and Sokal, 2013

PROP The Kauers-Zeilberger function has diagonal coefficients S-Zudilin 2013

$$
d_n = \sum_{k=0}^n {n \choose k}^2 {2k \choose n}^2.
$$

- Consider rational functions $F = 1/p(x_1, \ldots, x_d)$ with p a symmetric polynomial, linear in each variable.
	- Under what condition(s) is the positivity of F implied by the positivity of its diagonal? Q

$$
S(x, y, z) = \frac{1}{1 - (x + y + z) + \frac{3}{4}(xy + yz + zx)}.
$$

 $S(2x, 2y, 2z)$ has diagonal coefficients

$$
s_n=\sum_{k=0}^n(-27)^{n-k}2^{2k-n}\frac{(3k)!}{k!^3}\binom{k}{n-k},
$$

$$
S(x, y, z) = \frac{1}{1 - (x + y + z) + \frac{3}{4}(xy + yz + zx)}.
$$

 $S(2x, 2y, 2z)$ has diagonal coefficients

$$
s_n = \sum_{k=0}^n (-27)^{n-k} 2^{2k-n} \frac{(3k)!}{k!^3} \binom{k}{n-k},
$$

whose generating function is

$$
y(z) = {}_2F_1\left(\begin{array}{c} \frac{1}{3}, \frac{2}{3} \\ 1 \end{array} \middle| 27z(2 - 27z) \right).
$$

$$
S(x, y, z) = \frac{1}{1 - (x + y + z) + \frac{3}{4}(xy + yz + zx)}.
$$

 $S(2x, 2y, 2z)$ has diagonal coefficients

$$
s_n = \sum_{k=0}^n (-27)^{n-k} 2^{2k-n} \frac{(3k)!}{k!^3} \binom{k}{n-k},
$$

whose generating function is

$$
y(z) = {}_2F_1\left(\begin{matrix} \frac{1}{3}, \frac{2}{3} \\ 1 \end{matrix} \middle| 27z(2 - 27z)\right).
$$

• Ramanujan's cubic transformation

$$
{}_2F_1\left(\frac{\frac{1}{3},\frac{2}{3}}{1}\middle|1-\left(\frac{1-x}{1+2x}\right)^3\right)=(1+2x)_2F_1\left(\frac{\frac{1}{3},\frac{2}{3}}{1}\middle|x^3\right),\right
$$

$$
S(x, y, z) = \frac{1}{1 - (x + y + z) + \frac{3}{4}(xy + yz + zx)}.
$$

 $S(2x, 2y, 2z)$ has diagonal coefficients

$$
s_n = \sum_{k=0}^n (-27)^{n-k} 2^{2k-n} \frac{(3k)!}{k!^3} \binom{k}{n-k},
$$

whose generating function is

$$
y(z) = {}_2F_1\left(\begin{matrix} \frac{1}{3}, \frac{2}{3} \\ 1 \end{matrix} \middle| 27z(2 - 27z)\right).
$$

• Ramanujan's cubic transformation

$$
{}_2F_1\left(\begin{matrix} \frac{1}{3},\frac{2}{3} \\ 1 \end{matrix} \Bigg| 1 - \left(\frac{1-x}{1+2x}\right)^3\right) = (1+2x)_2F_1\left(\begin{matrix} \frac{1}{3},\frac{2}{3} \\ 1 \end{matrix} \Bigg|x^3\right),\,
$$

puts this in the form

$$
y(z) = (1 + 2x(z))_2 F_1\left(\begin{array}{c} \frac{1}{3}, \frac{2}{3} \\ 1 \end{array} \middle| x(z)^3\right),
$$

where the algebraic $x(z)=c_1z+c_2z^2+\dots$ has positive coefficients.

A question, revisited

- Consider rational functions $F = 1/p(x_1, \ldots, x_d)$ with p a symmetric polynomial, linear in each variable.
	- Under what condition(s) is the positivity of F implied by the positivity of its diagonal? Q
- Consider rational functions $F = 1/p(x_1, \ldots, x_d)$ with p a symmetric polynomial, linear in each variable.
	- Under what condition(s) is the positivity of F implied by the positivity of its diagonal? Q

EG
$$
\frac{1}{1+x+y}
$$
 has positive diagonal coefficients but is not positive.

- Consider rational functions $F = 1/p(x_1, \ldots, x_d)$ with p a symmetric polynomial, linear in each variable.
	- Under what condition(s) is the positivity of F implied by the positivity of its diagonal? Q

1 **EG** $\frac{1}{1 + x + y}$ has positive diagonal coefficients but is not positive.

Q F positive \Longleftrightarrow diagonal of F and $F|_{x_d=0}$ are positive?

• Consider rational functions $F = 1/p(x_1, \ldots, x_d)$ with p a symmetric polynomial, linear in each variable.

Under what condition(s) is the positivity of F implied by the positivity of its diagonal? Q

EG
$$
\frac{1}{1+x+y}
$$
 has positive diagonal coefficients but is not positive.

Q F positive
$$
\iff
$$
 diagonal of F and $F|_{x_d=0}$ are positive?

THM

\nS-zudilin

\n
$$
F(x, y) = \frac{1}{1 + c_1(x + y) + c_2xy}
$$
\nis positive

\ndiagonal of F and $F|_{x_d=0}$ are positive

- The diagonal is positive. See the set of the (apply CAD to recurrence of order 3 and degree 6)
- The rational function obtained from setting $w = 0$ is positive.

- The diagonal is positive. \blacksquare S–Zudilin '13 (apply CAD to recurrence of order 3 and degree 6)
- The rational function obtained from setting $w = 0$ is positive. (because $64/27 < 4$)

Arithmetically interesting positive diagonals

Arithmetically interesting positive diagonals

The rational function 1 $1 - (x + y + z) + 4xyz$ has diagonal coefficients $\sum\limits_{}^n$ $k=0$ (n) k $\bigg)$ ³. EG Koornwinder's rational function 1 $1 - (x + y + z + w) + 4e₃(x, y, z, w) - 16xyzw$ has diagonal coefficients \sum_1^n $_{k=0}$ $(2k)$ k $\sum_{n=1}^{2} (2(n-k))^{n}$ $n - k$ $\big)^2$. Using a positivity preserving operator, implies positivity of $1/e_3(1-x, 1-y, 1-z, 1-w)$ EG

- These last two sequences are examples of Apéry-like numbers.
- The Apéry numbers are $1, 5, 73, 1445, \ldots$

$$
A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2.
$$

- These last two sequences are examples of Apéry-like numbers.
- The Apéry numbers are $1, 5, 73, 1445, \ldots$

$$
A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2.
$$

$$
\mathop{\rm THM}\limits_{\text{Apéry 78}}\zeta(3)=\sum_{n=1}^\infty\frac{1}{n^3}\text{ is irrational.}
$$

- These last two sequences are examples of Apéry-like numbers.
- The Apéry numbers are $1, 5, 73, 1445, \ldots$

$$
A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2.
$$

$$
\mathop{\rm THM}\limits_{\rm Ap\'ery~78} \; \zeta(3) = \sum_{n=1}^\infty {1\over n^3} \; \text{is irrational}.
$$

• The Apéry numbers satisfy, for $(a, b, c) = (17, 5, 1)$, $(n+1)^3u_{n+1} = (2n+1)(an^2+an+b)u_n - cn^3u_{n-1}.$

- These last two sequences are examples of Apéry-like numbers.
- The Apéry numbers are $1, 5, 73, 1445, \ldots$

$$
A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2.
$$

THM
Apéry 78
$$
\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}
$$
 is irrational.

• The Apéry numbers satisfy, for $(a, b, c) = (17, 5, 1)$, $(n+1)^3u_{n+1} = (2n+1)(an^2+an+b)u_n - cn^3u_{n-1}.$

Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral? Ω Beukers, Zagier

- These last two sequences are examples of Apéry-like numbers.
- The Apéry numbers are $1, 5, 73, 1445, \ldots$

$$
A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2.
$$

THM
Apéry 78
$$
\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}
$$
 is irrational.

• The Apéry numbers satisfy, for $(a, b, c) = (17, 5, 1)$, $(n+1)^3u_{n+1} = (2n+1)(an^2+an+b)u_n - cn^3u_{n-1}.$

Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral? Ω Beukers, Zagier

Essentially, only 14 tuples (a, b, c) found. $($ Almkvist–Zudilin)

- These last two sequences are examples of Apéry-like numbers.
- The Apéry numbers are $1, 5, 73, 1445, \ldots$

$$
A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2.
$$

THM
Apéry 78
$$
\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}
$$
 is irrational.

• The Apéry numbers satisfy, for $(a, b, c) = (17, 5, 1)$, $(n+1)^3u_{n+1} = (2n+1)(an^2+an+b)u_n - cn^3u_{n-1}.$

Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral? Ω Beukers, Zagier

- **Essentially, only** 14 tuples (a, b, c) found. $(A_{lmkvist-Zudilin})$
- Similarly: $(n + 1)^2 u_{n+1} = (an^2 + an + b)u_n cn^2 u_{n-1}$ (Beukers, Zagier)

• 4 hypergeometric and Legendrian solutions with generating functions

$$
{}_3F_2\left(\begin{matrix} \frac{1}{2},\alpha,1-\alpha\\ 1,1 \end{matrix} \Bigg| 4C_{\alpha}z\right), \qquad \frac{1}{1-C_{\alpha}z}{}_2F_1\left(\begin{matrix} \alpha,1-\alpha\\ 1 \end{matrix} \Bigg| \frac{-C_{\alpha}z}{1-C_{\alpha}z}\right)^2,
$$

with
$$
\alpha = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}
$$
 and $C_{\alpha} = 2^4, 3^3, 2^6, 2^4 \cdot 3^3$.

• Six sporadic solutions:

$$
\begin{array}{ll}\n(a, b, c) & A(n) \\
(7, 3, 81) & \sum_{k} (-1)^{k} 3^{n-3k} {n \choose 3k} {n+k \choose n} \frac{(3k)!}{k!^{3}} \\
(11, 5, 125) & \sum_{k} (-1)^{k} {n \choose k}^{3} { (4n-5k-1) + (4n-5k) \choose 3n} \\
(10, 4, 64) & \sum_{k} {n \choose k}^{2} {2n-k \choose k} \\
(12, 4, 16) & \sum_{k} {n \choose k}^{2} {2k \choose n}^{2} \\
(9, 3, -27) & \sum_{k,l} {n \choose k}^{2} {n \choose l} {k \choose l} {k+l \choose n} \\
(17, 5, 1) & \sum_{k} {n \choose k}^{2} {n+k \choose n}^{2}\n\end{array}
$$

• The Apéry numbers
\n
$$
A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2
$$
\nsatisfy
\n
$$
\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)} = \sum_{n \ge 0} A(n) \left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)} \right)^n
$$
\nmodular form
\n
$$
1 + 5q + 13q^2 + 23q^3 + O(q^4)
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} (q^2 - 1) \frac{1}{2} \int_{0}^{1} (q^2 - 1) \frac{1}{2} \frac{1}{2} \
$$

• The Apéry numbers
\n
$$
A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2
$$
\nsatisfy
\n
$$
\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)} = \sum_{n \geq 0} A(n) \left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)} \right)^n
$$
\nmodular form
\n
$$
1 + 5q + 13q^2 + 23q^3 + O(q^4)
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} (q^2 - 1) \frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} (q^2 - 1) \frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}
$$
\n
$$
= e^{2\pi i \tau}
$$

• For $p \geqslant 5$, satisfy the supercongruence Beukers, Coster '85, '88

$$
A(mp^r) \equiv A(mp^{r-1}) \quad (\text{mod } p^{3r}).
$$

• The Apéry numbers
\n
$$
A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2
$$
\nsatisfy
\n
$$
\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)} = \sum_{n \geq 0} A(n) \left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)} \right)^n
$$
\nmodular form
\n
$$
1 + 5q + 13q^2 + 23q^3 + O(q^4)
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} (q^2 - 1) \frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)} d\tau
$$
\n
$$
= e^{2\pi i \tau}
$$

• For $p \geqslant 5$, satisfy the supercongruence Beukers, Coster '85, '88

$$
A(mp^r) \equiv A(mp^{r-1}) \quad (\text{mod } p^{3r}).
$$

• Both properties hold for other Apéry-like numbers as well!

But some of the supercongruences are still open.

THANK YOU!

Slides for this talk will be available from my website: http://arminstraub.com/talks

A. Straub Positivity of Szegö's rational function Advances in Applied Mathematics, Vol. 41, Issue 2, Aug 2008, p. 255-264