Core partitions into distinct parts and an analog of Euler's theorem

Integers Conference 2016 University of West Georgia

Armin Straub

Oct 6, 2016

University of South Alabama

Core partitions

• The integer partition $(5, 3, 3, 1)$ has Young diagram:

• To each cell u in the diagram is assigned its hook.

• To each cell u in the diagram is assigned its hook.

- To each cell u in the diagram is assigned its hook.
- The hook length of u is the number of cells in its hook.

- To each cell u in the diagram is assigned its hook.
- The hook length of u is the number of cells in its hook.
- A partition is *t*-core if no cell has hook length t . For instance, the above partition is 7-core.

2 / 16

- To each cell u in the diagram is assigned its hook.
- The hook length of u is the number of cells in its hook.
- A partition is *t*-core if no cell has hook length t . For instance, the above partition is 7-core.
- A partition is (s, t) -core if it is both s-core and t-core.

- To each cell u in the diagram is assigned its hook.
- The hook length of u is the number of cells in its hook.
- A partition is *t*-core if no cell has hook length t . For instance, the above partition is 7-core.
- A partition is (s, t) -core if it is both s-core and t-core.

LEM If a partition is *t*-core, then it is also rt-core for $r = 1, 2, 3...$

• Using the theory of modular forms, Granville and Ono (1996) showed:

(The case $t = p$ of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any $n \geq 0$ there exists a *t*-core partition of *n* whenever $t \geq 4$.

3 / 16

• Using the theory of modular forms, Granville and Ono (1996) showed:

(The case $t = p$ of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any $n \geq 0$ there exists a *t*-core partition of *n* whenever $t \geq 4$.

• If $c_t(n)$ is the number of *t*-core partitions of *n*, then

$$
\sum_{n=0}^{\infty} c_t(n)q^n = \prod_{n=1}^{\infty} \frac{(1-q^{tn})^t}{1-q^n}.
$$

$$
\sum_{n=0}^{\infty} c_2(n)q^n = \sum_{n=0}^{\infty} q^{\frac{1}{2}n(n+1)}, \quad \sum_{n=0}^{\infty} c_3(n)q^n = 1 + q + 2q^2 + 2q^4 + q^5 + 2q^6 + q^8 + \dots
$$

• Using the theory of modular forms, Granville and Ono (1996) showed:

(The case $t = p$ of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any $n \geq 0$ there exists a t-core partition of n whenever $t \geq 4$.

• If $c_t(n)$ is the number of *t*-core partitions of n, then

$$
\sum_{n=0}^{\infty} c_t(n)q^n = \prod_{n=1}^{\infty} \frac{(1-q^{tn})^t}{1-q^n}.
$$

$$
\sum_{n=0}^{\infty} c_2(n)q^n = \sum_{n=0}^{\infty} q^{\frac{1}{2}n(n+1)}, \quad \sum_{n=0}^{\infty} c_3(n)q^n = 1 + q + 2q^2 + 2q^4 + q^5 + 2q^6 + q^8 + \dots
$$

Q Can we give a combinatorial proof of the Granville–Ono result?

3 / 16

Using the theory of modular forms, Granville and Ono (1996) showed:

(The case $t = p$ of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any $n \geq 0$ there exists a *t*-core partition of n whenever $t \geq 4$.

• If $c_t(n)$ is the number of *t*-core partitions of *n*, then

$$
\sum_{n=0}^{\infty} c_t(n)q^n = \prod_{n=1}^{\infty} \frac{(1-q^{tn})^t}{1-q^n}.
$$

$$
\sum_{n=0}^{\infty} c_2(n)q^n = \sum_{n=0}^{\infty} q^{\frac{1}{2}n(n+1)}, \quad \sum_{n=0}^{\infty} c_3(n)q^n = 1 + q + 2q^2 + 2q^4 + q^5 + 2q^6 + q^8 + \dots
$$

Q Can we give a combinatorial proof of the Granville–Ono result?

COR The total number of t -core partitions is infinite.

Though this is probably the most complicated way possible to see that. . .

Counting core partitions

Counting core partitions

The number of (s, t) -core partitions is finite if and only if s and t are coprime. In that case, this number is THM Anderson 2002

$$
\frac{1}{s+t} \binom{s+t}{s}.
$$

Counting core partitions

The number of (s, t) -core partitions is finite if and only if s and t are coprime. In that case, this number is THM Anderson 2002

$$
\frac{1}{s+t} \binom{s+t}{s}.
$$

• Olsson and Stanton (2007): the largest size of such partitions is $\frac{1}{24}(s^2-1)(t^2-1)$.

The number of (s, t) -core partitions is finite if and only if s and t are coprime. In that case, this number is THM **Anderson** 2002

$$
\frac{1}{s+t} \binom{s+t}{s}.
$$

- Olsson and Stanton (2007): the largest size of such partitions is $\frac{1}{24}(s^2-1)(t^2-1)$.
- Note that the number of $(s, s + 1)$ -core partitions is the Catalan number

$$
C_s = \frac{1}{s+1} \binom{2s}{s} = \frac{1}{2s+1} \binom{2s+1}{s},
$$

which also counts the number of Dyck paths of order s.

4 / 16

The number of (s, t) -core partitions is finite if and only if s and t are coprime. In that case, this number is THM **Anderson** 2002

$$
\frac{1}{s+t} \binom{s+t}{s}.
$$

- Olsson and Stanton (2007): the largest size of such partitions is $\frac{1}{24}(s^2-1)(t^2-1)$.
- Note that the number of $(s, s + 1)$ -core partitions is the Catalan number

$$
C_s = \frac{1}{s+1} \binom{2s}{s} = \frac{1}{2s+1} \binom{2s+1}{s},
$$

which also counts the number of Dyck paths of order s.

Amdeberhan and Leven (2015) give generalizations to $(s, s+1, \ldots, s+p)$ -core partitions, including a relation to generalized Dyck paths.

4 / 16

The number of (s, t) -core partitions is finite if and only if s and t are coprime. In that case, this number is THM **Anderson** 2002

$$
\frac{1}{s+t} \binom{s+t}{s}.
$$

- Olsson and Stanton (2007): the largest size of such partitions is $\frac{1}{24}(s^2-1)(t^2-1)$.
- Note that the number of $(s, s + 1)$ -core partitions is the Catalan number

$$
C_s = \frac{1}{s+1} \binom{2s}{s} = \frac{1}{2s+1} \binom{2s+1}{s},
$$

which also counts the number of Dyck paths of order s.

- Amdeberhan and Leven (2015) give generalizations to $(s, s+1, \ldots, s+p)$ -core partitions, including a relation to generalized Dyck paths.
- Ford, Mai and Sze (2009) show that the number of self-conjugate (s, t) -core partitions is

$$
\begin{pmatrix} \lfloor s/2 \rfloor + \lfloor t/2 \rfloor \\ \lfloor s/2 \rfloor \end{pmatrix}.
$$

• Amdeberhan raises the interesting problem of counting the number of special partitions which are t -core for certain values of t .

CONJ The number of $(s, s+1)$ -core partitions into distinct parts equals the Fibonacci number F_{s+1} .

• Amdeberhan raises the interesting problem of counting the number of special partitions which are t -core for certain values of t .

CONJ The number of $(s, s+1)$ -core partitions into distinct parts equals the Fibonacci number F_{s+1} .

- He further conjectured that the largest possible size of an $(s, s + 1)$ -core partition into distinct parts is $|s(s + 1)/6|$, and that there is a unique such largest partition unless $s \equiv 1$ modulo 3, in which case there are two partitions of maximum size.
- Amdeberhan also conjectured that the total size of these partitions is

$$
\sum_{i+j+k=s+1} F_i F_j F_k.
$$

• Amdeberhan raises the interesting problem of counting the number of special partitions which are t -core for certain values of t .

CONJ The number of $(s, s+1)$ -core partitions into distinct parts equals the Fibonacci number F_{s+1} .

- He further conjectured that the largest possible size of an $(s, s + 1)$ -core partition into distinct parts is $|s(s + 1)/6|$, and that there is a unique such largest partition unless $s \equiv 1$ modulo 3, in which case there are two partitions of maximum size.
- Amdeberhan also conjectured that the total size of these partitions is

$$
\sum_{i+j+k=s+1} F_i F_j F_k.
$$

EG
$$
s=4
$$
 \emptyset \Box \Box \Box \Box

• Amdeberhan raises the interesting problem of counting the number of special partitions which are t -core for certain values of t .

CONJ The number of $(s, s+1)$ -core partitions into distinct parts equals the Fibonacci number F_{s+1} .

- He further conjectured that the largest possible size of an $(s, s + 1)$ -core partition into distinct parts is $|s(s + 1)/6|$, and that there is a unique such largest partition unless $s \equiv 1$ modulo 3, in which case there are two partitions of maximum size.
- Amdeberhan also conjectured that the total size of these partitions is

$$
\sum_{i+j+k=s+1} F_i F_j F_k.
$$

5 / 16

THM Let $N_d(s)$ be the number of $(s, ds - 1)$ -core partitions into distinct parts. Then, $N_d(1) = 1$, $N_d(2) = d$ and

$$
N_d(s) = N_d(s - 1) + dN_d(s - 2).
$$

- The case $d=1$ settles Amdeberhan's conjecture.
- This special case was independently also proved by Xiong, who further shows the other claims by Amdeberhan.

THM Let $N_d(s)$ be the number of $(s, ds - 1)$ -core partitions into distinct parts. Then, $N_d(1) = 1$, $N_d(2) = d$ and

$$
N_d(s) = N_d(s - 1) + dN_d(s - 2).
$$

- The case $d=1$ settles Amdeberhan's conjecture.
- This special case was independently also proved by Xiong, who further shows the other claims by Amdeberhan.
- The case $d=2$ shows that there are 2^{s-1} many $(s,2s-1)$ -core partitions into distinct parts.

THM Let $N_d(s)$ be the number of $(s, ds - 1)$ -core partitions into distinct parts. Then, $N_d(1) = 1$, $N_d(2) = d$ and

$$
N_d(s) = N_d(s - 1) + dN_d(s - 2).
$$

- The case $d=1$ settles Amdeberhan's conjecture.
- This special case was independently also proved by Xiong, who further shows the other claims by Amdeberhan.
- The case $d=2$ shows that there are 2^{s-1} many $(s,2s-1)$ -core partitions into distinct parts.

The first few generalized Fibonacci polynomials $N_d(s)$ are 1, d, 2d, $d(d+2)$, $d(3d+2)$, $d(d^2+5d+2)$, ... For $d = 1$, we recover the usual Fibonacci numbers. For $d = 2$, we find $N_2(s) = 2^{s-1}$. EG

- Introduced (up to a shift by 1) by Corteel and Lovejoy (2004) in their study of overpartitions.
- The perimeter is the largest part plus the number of parts (minus 1).
- The rank is the largest part minus the number of parts.

The number of partitions into distinct parts with perimeter M equals the number of partitions into odd parts with perimeter M . THM S 2016

An analog of Euler's theorem

• While it appears natural and is easily proved, we have been unable to find this result in the literature.

[Core partitions into distinct parts and an analog of Euler's theorem](#page-0-0) Armin Straub Armin Straub

• While it appears natural and is easily proved, we have been unable to find this result in the literature.

[Core partitions into distinct parts and an analog of Euler's theorem](#page-0-0) Armin Straub Armin Straub

Euler's theorem

THM The number $D(n)$ of partitions of n into distinct parts equals the number $O(n)$ of partitions of n into odd parts.

Euler famously proved his claim using a very elegant manipula-proof tion of generating functions:

$$
\sum_{n\geqslant 0} D(n)x^n = (1+x)(1+x^2)(1+x^3)\cdots
$$
\n
$$
= \frac{1-x^2}{1-x}\frac{1-x^4}{1-x^2}\frac{1-x^6}{1-x^3}\cdots
$$
\n
$$
= \frac{1}{1-x}\frac{1}{1-x^3}\frac{1}{1-x^5}\cdots = \sum_{n\geqslant 0} O(n)x^n.
$$

• Bijective proofs for instance by Sylvester.

[Core partitions into distinct parts and an analog of Euler's theorem](#page-0-0) Armin Straub Armin Straub Armin Straub

9 / 16

• Bousquet-Mélou and Eriksson (1997): the number of partitions of n into distinct parts with sign-alternating sum k is equal to the number of partitions of n into k odd parts.

Bousquet-Mélou and Eriksson (1997): the number of partitions of n into distinct parts with sign-alternating sum k is equal to the number of partitions of n into k odd parts.

Kim and Yee (1997): combinatorial proof through Sylvester's bijection.

• The number of partitions of n into distinct parts with maximum part M is equal to the number of partitions of n into odd parts such that the maximum part plus twice the number of parts is $2M + 1$.

Bousquet-Mélou and Eriksson (1997): the number of partitions of n into distinct parts with sign-alternating sum k is equal to the number of partitions of n into k odd parts.

- The number of partitions of n into distinct parts with maximum part M is equal to the number of partitions of n into odd parts such that the maximum part plus twice the number of parts is $2M + 1$.
- The number of partitions of n into odd parts with maximum part equal to $2M + 1$ is equal to the number of partitions of n into distinct parts with rank $2M$ or $2M + 1$.

Bousquet-Mélou and Eriksson (1997): the number of partitions of n into distinct parts with sign-alternating sum k is equal to the number of partitions of n into k odd parts.

- The number of partitions of n into distinct parts with maximum part M is equal to the number of partitions of n into odd parts such that the maximum part plus twice the number of parts is $2M + 1$.
- The number of partitions of n into odd parts with maximum part equal to $2M + 1$ is equal to the number of partitions of n into distinct parts with rank $2M$ or $2M + 1$.
	- Do similarly interesting refinements exist for partitions into distinct (respectively odd) parts with perimeter M ? Q

Bousquet-Mélou and Eriksson (1997): the number of partitions of n into distinct parts with sign-alternating sum k is equal to the number of partitions of n into k odd parts.

- The number of partitions of n into distinct parts with maximum part M is equal to the number of partitions of n into odd parts such that the maximum part plus twice the number of parts is $2M + 1$.
- The number of partitions of n into odd parts with maximum part equal to $2M + 1$ is equal to the number of partitions of n into distinct parts with rank $2M$ or $2M + 1$.
	- Do similarly interesting refinements exist for partitions into distinct (respectively odd) parts with perimeter M ? Q
- Fu and Tang (2016) indeed prove refinements analogous to Fine's. The number of partitions with perimeter n into distinct parts with maximum part M is equal to the number of partitions with perimeter n into odd parts such that the maximum part plus twice the number of parts is $2M + 1$.

- The following very simple observation connects core partitions with partitions of bounded perimeter.
- A partition into distinct parts is $(s, s + 1)$ -core if and only if it has perimeter strictly less than s . LEM

• The following very simple observation connects core partitions with partitions of bounded perimeter.

A partition into distinct parts is $(s, s + 1)$ -core if and only if it has perimeter strictly less than s . LEM

proof Let λ be a partition into distinct parts.

• The following very simple observation connects core partitions with partitions of bounded perimeter.

A partition into distinct parts is $(s, s + 1)$ -core if and only if it has perimeter strictly less than s . LEM

proof Let λ be a partition into distinct parts.

• Assume λ has a cell u with hook length $t \geq s$.

• The following very simple observation connects core partitions with partitions of bounded perimeter.

A partition into distinct parts is $(s, s + 1)$ -core if and only if it has perimeter strictly less than s . LEM

proof Let λ be a partition into distinct parts.

- Assume λ has a cell u with hook length $t \geq s$.
- Since λ has distinct parts, the cell to the right of u has hook length $t-1$ or $t-2$.

• The following very simple observation connects core partitions with partitions of bounded perimeter.

A partition into distinct parts is $(s, s + 1)$ -core if and only if it has perimeter strictly less than s . LEM

proof Let λ be a partition into distinct parts.

- Assume λ has a cell u with hook length $t \geq s$.
- Since λ has distinct parts, the cell to the right of u has hook length $t-1$ or $t-2$.
- It follows that λ has a hook of length s or $s + 1$.

• The following very simple observation connects core partitions with partitions of bounded perimeter.

LEM A partition into distinct parts is $(s, s + 1)$ -core if and only if it has perimeter strictly less than s .

proof Let λ be a partition into distinct parts.

- Assume λ has a cell u with hook length $t \geq s$.
- Since λ has distinct parts, the cell to the right of u has hook length $t-1$ or $t-2$.
- It follows that λ has a hook of length s or $s + 1$.

COR An $(s, ds − 1)$ -core partition into distinct parts has perimeter at most $ds - 2$.

Summary

The number of (s, t) -core partitions is finite if and only if s and t are coprime. In that case, this number is THM Anderson 2002

$$
\frac{1}{s+t} \binom{s+t}{s}.
$$

THM Let $N_d(s)$ be the number of $(s, ds - 1)$ -core partitions into distinct parts. Then, $N_d(1) = 1$, $N_d(2) = d$ and $N_d(s) = N_d(s-1) + dN_d(s-2).$ S 2016

• In particular, there are F_s many $(s - 1, s)$ -core partitions into distinct parts, • and 2^{s-1} many $(s, 2s - 1)$ -core partitions into distinct parts.

What is the number of (s, t) -core partitions into distinct parts in general? Q

[Core partitions into distinct parts and an analog of Euler's theorem](#page-0-0) Armin Straub Armin Straub Armin Straub

 $\mathbf Q$ What is the number of (s, t) -core partitions into distinct parts?

[Core partitions into distinct parts and an analog of Euler's theorem](#page-0-0) Armin Straub Armin Straub

CONDECT

THM 2^{s-1} many $(s, s + 2)$ -core partitions into distinct parts (s odd).

Q How many $(s, s + 3)$ -core partitions into distinct parts?

• 1, 3, ∞ , 8, 18, ∞ , 50, 101, ∞ , 291, 557, ∞ , 1642, 3048, ∞ , 9116, 16607, ...

THM 2^{s-1} many $(s, s + 2)$ -core partitions into distinct parts (s odd).

The largest size of $(2n - 1, 2n + 1)$ -core partitions into distinct parts is

$$
\frac{1}{24}n(n^2-1)(5n+6).
$$

Now, also proven by Yan, Qin, Jin, Zhou (2016).

Q How many $(s, s + 3)$ -core partitions into distinct parts?

• $1, 3, \infty, 8, 18, \infty, 50, 101, \infty, 291, 557, \infty, 1642, 3048, \infty, 9116, 16607, \ldots$

THM 2^{s-1} many $(s, s + 2)$ -core partitions into distinct parts (s odd).

• The largest size of $(2n - 1, 2n + 1)$ -core partitions into distinct parts is

$$
\frac{1}{24}n(n^2-1)(5n+6).
$$

Now, also proven by Yan, Qin, Jin, Zhou (2016).

Q How many $(s, s + 3)$ -core partitions into distinct parts?

- 1, 3, ∞ , 8, 18, ∞ , 50, 101, ∞ , 291, 557, ∞ , 1642, 3048, ∞ , 9116, 16607, ...
- The largest size of $(3n 2, 3n + 1)$ -core partitions into distinct parts appears to be

$$
\frac{1}{24}n(n^2-1)(9n+10).
$$

THM 2^{s-1} many $(s, s + 2)$ -core partitions into distinct parts (s odd).

• The largest size of $(2n - 1, 2n + 1)$ -core partitions into distinct parts is

$$
\frac{1}{24}n(n^2-1)(5n+6).
$$

Now, also proven by Yan, Qin, Jin, Zhou (2016).

Q How many $(s, s + 3)$ -core partitions into distinct parts?

- 1, 3, ∞ , 8, 18, ∞ , 50, 101, ∞ , 291, 557, ∞ , 1642, 3048, ∞ , 9116, 16607, ...
- The largest size of $(3n-2,3n+1)$ -core partitions into distinct parts appears to be

$$
\frac{1}{24}n(n^2-1)(9n+10).
$$

The largest size of $(3n - 1, 3n + 2)$ -core partitions into distinct parts appears to be

$$
\frac{1}{24}n(9n^3+38n^2+39n-14).
$$

THANK YOU!

Slides for this talk will be available from my website: <http://arminstraub.com/talks>

Tewodros Amdeberhan Theorems, problems and conjectures Preprint, 2015. arXiv:1207.4045v6

Armin Straub Core partitions into distinct parts and an analog of Euler's theorem European Journal of Combinatorics, Vol. 57, 2016, p. 40-49

Huan Xiong Core partitions with distinct parts Preprint, 2015. arXiv:1508.07918

[Core partitions into distinct parts and an analog of Euler's theorem](#page-0-0) Armin Straub Armin Straub