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Core partitions

• The integer partition (5, 3, 3, 1) has Young diagram:

• To each cell u in the diagram is assigned its hook.
• The hook length of u is the number of cells in its hook.

• A partition is t-core if no cell has hook length t.
For instance, the above partition is 7-core.

• A partition is (s, t)-core if it is both s-core and t-core.

If a partition is t-core, then it is also rt-core for r = 1, 2, 3 . . .LEM
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The number of core partitions

• Using the theory of modular forms, Granville and Ono (1996) showed:
(The case t = p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

For any n > 0 there exists a t-core partition of n whenever t > 4.THM

• If ct(n) is the number of t-core partitions of n, then

∞∑
n=0

ct(n)q
n =

∞∏
n=1

(1− qtn)t

1− qn
.

∞∑
n=0

c2(n)q
n =

∞∑
n=0

q
1
2
n(n+1),

∞∑
n=0

c3(n)q
n = 1 + q + 2q2 + 2q4 + q5 + 2q6 + q8 + . . .

Can we give a combinatorial proof of the Granville–Ono result?Q

The total number of t-core partitions is infinite.COR

Though this is probably the most complicated way possible to see that. . .
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Counting core partitions

The number of (s, t)-core partitions is finite if and only if s and
t are coprime.

In that case, this number is

1

s+ t

(
s+ t

s

)
.

THM
Anderson

2002

• Olsson and Stanton (2007): the largest size of such partitions is 1
24
(s2− 1)(t2− 1).

• Note that the number of (s, s+ 1)-core partitions is the Catalan number

Cs =
1

s+ 1

(
2s

s

)
=

1

2s+ 1

(
2s+ 1

s

)
,

which also counts the number of Dyck paths of order s.
• Amdeberhan and Leven (2015) give generalizations to (s, s+ 1, . . . , s+ p)-core

partitions, including a relation to generalized Dyck paths.
• Ford, Mai and Sze (2009) show that the number of self-conjugate (s, t)-core

partitions is (
bs/2c+ bt/2c
bs/2c

)
.
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Core partitions into distinct parts

• Amdeberhan raises the interesting problem of counting the number of
special partitions which are t-core for certain values of t.

The number of (s, s+1)-core partitions into distinct parts equals
the Fibonacci number Fs+1.

CONJ

• He further conjectured that the largest possible size of an (s, s+ 1)-core
partition into distinct parts is bs(s+ 1)/6c, and that there is a unique such
largest partition unless s ≡ 1 modulo 3, in which case there are two
partitions of maximum size.

• Amdeberhan also conjectured that the total size of these partitions is∑
i+j+k=s+1

FiFjFk.

s=4
F5=5 ∅
s=5
F6=8 ∅

EG
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A two-parameter generalization

Let Nd(s) be the number of (s, ds− 1)-core partitions into dis-
tinct parts. Then, Nd(1) = 1, Nd(2) = d and

Nd(s) = Nd(s− 1) + dNd(s− 2).

THM
S 2016

• The case d = 1 settles Amdeberhan’s conjecture.
• This special case was independently also proved by Xiong, who

further shows the other claims by Amdeberhan.

• The case d = 2 shows that there are 2s−1 many (s, 2s− 1)-core
partitions into distinct parts.

The first few generalized Fibonacci polynomials Nd(s) are

1, d, 2d, d(d+ 2), d(3d+ 2), d(d2 + 5d+ 2), . . .

For d = 1, we recover the usual Fibonacci numbers.
For d = 2, we find N2(s) = 2s−1.

EG
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The perimeter of a partition

The perimeter of a partition is the maximum hook length in λ.DEF

The partition has perimeter 7.
EG

• Introduced (up to a shift by 1) by Corteel and Lovejoy (2004) in their
study of overpartitions.

• The perimeter is the largest part plus the number of parts (minus 1).

• The rank is the largest part minus the number of parts.

Core partitions into distinct parts and an analog of Euler’s theorem Armin Straub
7 / 16



The perimeter of a partition

The perimeter of a partition is the maximum hook length in λ.DEF

The partition has perimeter 7.
EG

• Introduced (up to a shift by 1) by Corteel and Lovejoy (2004) in their
study of overpartitions.

• The perimeter is the largest part plus the number of parts (minus 1).

• The rank is the largest part minus the number of parts.

Core partitions into distinct parts and an analog of Euler’s theorem Armin Straub
7 / 16



The perimeter of a partition

The perimeter of a partition is the maximum hook length in λ.DEF

The partition has perimeter 7.
EG

• Introduced (up to a shift by 1) by Corteel and Lovejoy (2004) in their
study of overpartitions.

• The perimeter is the largest part plus the number of parts (minus 1).

• The rank is the largest part minus the number of parts.

Core partitions into distinct parts and an analog of Euler’s theorem Armin Straub
7 / 16



An analog of Euler’s theorem

The number of partitions into distinct parts with perimeter M
equals the number of partitions into odd parts with perimeter
M .

Both are enumerated by the Fibonacci number FM .

THM
S 2016

Partitions into distinct parts with perimeter 5:

Partitions into odd parts with perimeter 5:

In each case, there are F5 = 5 many of these partitions.

EG

• While it appears natural and is easily proved, we have been unable to find
this result in the literature.
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Euler’s theorem

The number D(n) of partitions of n into distinct parts equals
the number O(n) of partitions of n into odd parts.

THM

Euler famously proved his claim using a very elegant manipula-
tion of generating functions:∑

n>0

D(n)xn = (1 + x)(1 + x2)(1 + x3) · · ·

=
1− x2

1− x
1− x4

1− x2
1− x6

1− x3
· · ·

=
1

1− x
1

1− x3
1

1− x5
· · · =

∑
n>0

O(n)xn.

proof

• Bijective proofs for instance by Sylvester.
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Refinements of Euler’s theorem

• Bousquet-Mélou and Eriksson (1997): the number of partitions of n into
distinct parts with sign-alternating sum k is equal to the number of
partitions of n into k odd parts.
Kim and Yee (1997): combinatorial proof through Sylvester’s bijection.

• The number of partitions of n into distinct parts with maximum part M is
equal to the number of partitions of n into odd parts such that the
maximum part plus twice the number of parts is 2M + 1.

• The number of partitions of n into odd parts with maximum part equal to
2M + 1 is equal to the number of partitions of n into distinct parts with
rank 2M or 2M + 1. [both taken from Fine’s book]

Do similarly interesting refinements exist for partitions into dis-
tinct (respectively odd) parts with perimeter M?

Q

• Fu and Tang (2016) indeed prove refinements analogous to Fine’s.

The number of partitions with perimeter n into distinct parts with maximum
part M is equal to the number of partitions with perimeter n into odd parts
such that the maximum part plus twice the number of parts is 2M + 1.
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Partitions of bounded perimeter

• The following very simple observation connects core partitions with
partitions of bounded perimeter.

A partition into distinct parts is (s, s + 1)-core if and only if it
has perimeter strictly less than s.

LEM

Let λ be a partition into distinct parts.

• Assume λ has a cell u with hook length t > s.

• Since λ has distinct parts, the cell to the right of u has
hook length t− 1 or t− 2.

• It follows that λ has a hook of length s or s+ 1.

proof

An (s, ds− 1)-core partition into distinct parts has perimeter at
most ds− 2.

COR
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Summary

The number of (s, t)-core partitions is finite if and only if s and
t are coprime. In that case, this number is

1

s+ t

(
s+ t

s

)
.

THM
Anderson

2002

Let Nd(s) be the number of (s, ds− 1)-core partitions into dis-
tinct parts. Then, Nd(1) = 1, Nd(2) = d and

Nd(s) = Nd(s− 1) + dNd(s− 2).

THM
S 2016

• In particular, there are Fs many (s− 1, s)-core partitions into distinct parts,
• and 2s−1 many (s, 2s− 1)-core partitions into distinct parts.

What is the number of (s, t)-core partitions into distinct parts
in general?

Q
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Enumerating (s, t)-core partitions into distinct parts

What is the number of (s, t)-core partitions into distinct parts?Q

s\t 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 ∞ 2 ∞ 3 ∞ 4 ∞ 5 ∞ 6 ∞
3 1 2 ∞ 3 4 ∞ 5 6 ∞ 7 8 ∞
4 1 ∞ 3 ∞ 5 ∞ 8 ∞ 11 ∞ 15 ∞
5 1 3 4 5 ∞ 8 16 18 16 ∞ 21 38

6 1 ∞ ∞ ∞ 8 ∞ 13 ∞ ∞ ∞ 32 ∞
7 1 4 5 8 16 13 ∞ 21 64 50 64 114

8 1 ∞ 6 ∞ 18 ∞ 21 ∞ 34 ∞ 101 ∞
9 1 5 ∞ 11 16 ∞ 64 34 ∞ 55 256 ∞
10 1 ∞ 7 ∞ ∞ ∞ 50 ∞ 55 ∞ 89 ∞
11 1 6 8 15 21 32 64 101 256 89 ∞ 144

12 1 ∞ ∞ ∞ 38 ∞ 114 ∞ ∞ ∞ 144 ∞

If s is odd, there are 2s−1 many (s, s + 2)-core
partitions into distinct parts.

CONJ

Yan, Qin, Jin, Zhou (2016) have very recently proven this
conjecture by analyzing order ideals in an associated poset
introduced by Anderson.
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(s, s+ 3)-core partitions into distinct parts

2s−1 many (s, s+ 2)-core partitions into distinct parts (s odd).THM

• The largest size of (2n− 1, 2n+ 1)-core partitions into distinct parts is

1

24
n(n2 − 1)(5n+ 6).

Now, also proven by Yan, Qin, Jin, Zhou (2016).

How many (s, s+ 3)-core partitions into distinct parts?Q

• 1, 3,∞, 8, 18,∞, 50, 101,∞, 291, 557,∞, 1642, 3048,∞, 9116, 16607, . . .

• The largest size of (3n− 2, 3n+1)-core partitions into distinct parts appears to be

1

24
n(n2 − 1)(9n+ 10).

• The largest size of (3n− 1, 3n+2)-core partitions into distinct parts appears to be

1

24
n(9n3 + 38n2 + 39n− 14).
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Enumerating (s, t)-core partitions into odd parts

What is the number of (s, t)-core partitions into odd parts?Q

s\t 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 2 2 2 2 2 2 2 2 2 2 2

3 1 2 ∞ 4 4 ∞ 6 6 ∞ 8 8 ∞
4 1 2 4 ∞ 7 6 9 ∞ 11 10 13 ∞
5 1 2 4 7 ∞ 17 12 17 25 ∞ 41 31

6 1 2 ∞ 6 17 ∞ 31 21 ∞ 34 62 ∞
7 1 2 6 9 12 31 ∞ 80 43 78 87 97

8 1 2 6 ∞ 17 21 80 ∞ 152 78 124 ∞
9 1 2 ∞ 11 25 ∞ 43 152 ∞ 404 166 ∞
10 1 2 8 10 ∞ 34 78 78 404 ∞ 790 308

11 1 2 8 13 41 62 87 124 166 790 ∞ 2140

12 1 2 ∞ ∞ 31 ∞ 97 ∞ ∞ 308 2140 ∞
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks
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