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Generating functions

The generating function of a sequence A0, A1, A2, . . . is∑
n>0

Anx
n.

DEF

The famous Fibonacci numbers Fn

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

are recursively defined via

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

Their generating function is∑
n>0

Fnx
n =

x

1− x− x2
.

EG

G(x) =
∑
n>0

Fnx
n = x+

∑
n>2

(Fn−1 + Fn−2)x
n

= x+ xG(x) + x2G(x)
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Benefits of generating functions

We can learn a lot about a sequence from its generating function.

• closed formulas

• identities between this and other sequences

• asymptotic behaviour

• congruences

• . . . ∑
n>0

Fnx
n =

x

1− x− x2

• singularities at −ϕ ≈ −1.618, −ϕ̄ ≈ 0.618 with ϕ = 1+
√
5

2

• radius of convergence is |ϕ̄| = ϕ−1

Therefore, lim sup
n→∞

F 1/n
n = ϕ.

EG
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Rational generating functions

By partial fractions,∑
n>0

Fnx
n =

x

1− x− x2
=

1

ϕ− ϕ̄

[
1

1− ϕx
− 1

1− ϕ̄x

]

=
1

ϕ− ϕ̄

∞∑
n=0

(ϕn − ϕ̄n)xn.

In other words,

Fn =
ϕn − ϕ̄n

ϕ− ϕ̄
=

1√
5

((
1 +
√

5

2

)n
−

(
1−
√

5

2

)n)
.

EG
Binet

• This can be done for any sequence generated by a rational function.
Such sequences are called C-finite.
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Catalan numbers

In how many ways can a product like abcd be interpreted?Q

In this case, there are five ways:

((ab)c)d, (a(bc))d, (ab)(cd), a((bc)d), a(b(cd))

EG

• The Catalan number Cn counts the the number of ways to interpret
a product of n+ 1 terms. 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . .

• Write x0x1 · · ·xn+1 as (x0x1 · · ·xk)(xk+1xk+2 · · ·xn+1) to find:

Cn+1 =

n∑
k=0

CkCn−k, C0 = 1
LEM
Segner

R. Stanley
Catalan Numbers
Cambridge University Press, 222 p., 2015.

Compiles 214 different objects from “combinatorics, algebra,
analysis, number theory, probability theory, geometry, topology,
and other areas” enumerated by Cn.
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Catalan number generating function

Cn+1 =

n∑
k=0

CkCn−k, C0 = 1
LEM
Segner

• In terms of the generating function F (x) =

∞∑
n=0

Cnx
n, this becomes:

F (x)− 1

x
=

∞∑
n=0

Cn+1x
n =

∞∑
n=0

(
n∑
k=0

CkCn−k

)
xn = F (x)2

Solving for F (x), we find that

F (x) =
1
√

1− 4x

2x
.
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Generating function freebies

∞∑
n=0

Cnx
n =

1−
√

1− 4x

2x

LEM

• At a glance, we see lim sup
n→∞

C1/n
n = 4. It is easy to be much more precise here.

• Expanding via the binomial series and simplifying,

Cn = −1

2
(−4)n+1

(
1/2

n+ 1

)

=
1

n+ 1

(
2n

n

)
.

• In particular, using Stirling’s formula, n! ∼
√

2πn
(
n
e

)n
Cn ∼

4n

n3/2
√
π
.

Show that Cn also counts the number of permutations of {1, 2, . . . , n}
that are 123-avoiding. That is, those permutations π1π2 . . . πn such
that we do not have i < j < k with πi < πj < πk.

For instance, 2314 is not 123-avoiding because it contains 234 as a substring.

EX
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Integer partitions

• There are 7 integer partitions of 5:

5, 4 + 1, 3 + 2, 3 + 1 + 1,

2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1

• It is common to represent each partition by its Young diagram:

• p(n) is the number of partitions of n.

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, . . .
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Euler’s generating function

∞∑
n=0

p(n)xn =
∏
k>1

1

1− xk
THM

Euler

(1 +x +x2 +x3 + . . .)
(1 +x2 +x2·2 +x3·2 + . . .)

(1 +x3 +x2·3 +x3·3 + . . .)
(1 +x4 +x2·4 +x3·4 + . . .)

...

• In the same way, we have the following variations:

∏
k>1

1

1− x2k−1

=
∞∑

n=0

podd(n)xn
∏
k>1

(1 + xk) =
∞∑

n=0

pdistinct(n)xn

EG

An Analog of Euler’s Theorem on Integer Partitions Armin Straub
9 / 26



Euler’s generating function

∞∑
n=0

p(n)xn =
∏
k>1

1

1− xk
THM

Euler

(1 +x +x2 +x3 + . . .)
(1 +x2 +x2·2 +x3·2 + . . .)

(1 +x3 +x2·3 +x3·3 + . . .)
(1 +x4 +x2·4 +x3·4 + . . .)

...

• In the same way, we have the following variations:

∏
k>1

1

1− x2k−1

=
∞∑

n=0

podd(n)xn
∏
k>1

(1 + xk) =
∞∑

n=0

pdistinct(n)xn

EG

An Analog of Euler’s Theorem on Integer Partitions Armin Straub
9 / 26



Euler’s generating function

∞∑
n=0

p(n)xn =
∏
k>1

1

1− xk
THM

Euler

(1 +x +x2 +x3 + . . .)
(1 +x2 +x2·2 +x3·2 + . . .)

(1 +x3 +x2·3 +x3·3 + . . .)
(1 +x4 +x2·4 +x3·4 + . . .)

...

• In the same way, we have the following variations:

∏
k>1

1

1− x2k−1

=
∞∑

n=0

podd(n)xn
∏
k>1

(1 + xk) =
∞∑

n=0

pdistinct(n)xn

EG

An Analog of Euler’s Theorem on Integer Partitions Armin Straub
9 / 26



Euler’s generating function

∞∑
n=0

p(n)xn =
∏
k>1

1

1− xk
THM

Euler

(1 +x +x2 +x3 + . . .)
(1 +x2 +x2·2 +x3·2 + . . .)

(1 +x3 +x2·3 +x3·3 + . . .)
(1 +x4 +x2·4 +x3·4 + . . .)

...

• In the same way, we have the following variations:

∏
k>1

1

1− x2k−1
=

∞∑
n=0

podd(n)xn

∏
k>1

(1 + xk) =
∞∑

n=0

pdistinct(n)xn

EG

An Analog of Euler’s Theorem on Integer Partitions Armin Straub
9 / 26



Euler’s generating function

∞∑
n=0

p(n)xn =
∏
k>1

1

1− xk
THM

Euler

(1 +x +x2 +x3 + . . .)
(1 +x2 +x2·2 +x3·2 + . . .)

(1 +x3 +x2·3 +x3·3 + . . .)
(1 +x4 +x2·4 +x3·4 + . . .)

...

• In the same way, we have the following variations:

∏
k>1

1

1− x2k−1
=

∞∑
n=0

podd(n)xn
∏
k>1

(1 + xk)

=
∞∑

n=0

pdistinct(n)xn

EG

An Analog of Euler’s Theorem on Integer Partitions Armin Straub
9 / 26



Euler’s generating function

∞∑
n=0

p(n)xn =
∏
k>1

1

1− xk
THM

Euler

(1 +x +x2 +x3 + . . .)
(1 +x2 +x2·2 +x3·2 + . . .)

(1 +x3 +x2·3 +x3·3 + . . .)
(1 +x4 +x2·4 +x3·4 + . . .)

...

• In the same way, we have the following variations:

∏
k>1

1

1− x2k−1
=

∞∑
n=0

podd(n)xn
∏
k>1

(1 + xk) =

∞∑
n=0

pdistinct(n)xn
EG

An Analog of Euler’s Theorem on Integer Partitions Armin Straub
9 / 26



Euler’s theorem

The number of partitions of n into distinct parts equals the
number of partitions of n into odd parts.

THM
Euler

Partitions of 6 into distinct parts:

6 5 + 1 4 + 2 3 + 2 + 1

Partitions of 6 into odd parts:

5 + 1 3 + 3 3 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1

EG
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Euler’s theorem

The number of partitions of n into distinct parts equals the
number of partitions of n into odd parts.

THM
Euler

Euler famously proved his claim using a very elegant manipula-
tion of generating functions:

∞∑
n=0

pdistinct(n)xn = (1 + x)(1 + x2)(1 + x3) · · ·

=
1− x2

1− x
1− x4

1− x2
1− x6

1− x3
· · ·

=
1

1− x
1

1− x3
1

1− x5
· · · =

∞∑
n=0

podd(n)xn

proof

• Bijective proofs for instance by Sylvester.
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Asymptotics

p(n) : 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, . . .

p(2016) ≈ 7.40× 1045

∞∑
n=0

p(n)xn =
∏
k>1

1

1− xk

• singularities at every root of unity

• radius of convergence is 1

Therefore, lim sup
n→∞

p(n)1/n = 1.

EG

p(n) ∼ 1

4n
√

3
eπ
√

2n/3THM
Hardy–

Ramanujan
1918
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Partition congruences

p(5m+ 4) ≡ 0 (mod 5),

p(7m+ 5) ≡ 0 (mod 7),

p(11m+ 6) ≡ 0 (mod 11).

THM
Ramanujan

1919

p(13 · 113m+ 237) ≡ 0 (mod 13)

p(17 · 414m+ 1122838) ≡ 0 (mod 17)

EG
Atkin
1968

• Ono (2000) and Ahlgren–Ono (2001) show that, if gcd(M, 6) = 1,

p(Am+B) ≡ 0 (mod M)

for infinitely many non-nested arithmetic progressions Am+B.

No such congruences exist for moduli 2 and 3.CONJ
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p(5m+ 4) ≡ 0 (mod 5),

p(7m+ 5) ≡ 0 (mod 7),

p(11m+ 6) ≡ 0 (mod 11).

THM
Ramanujan

1919

• Rank explains the congruences modulo 5 and 7. (Atkin, Swinnerton-Dyer (1954))

rank = largest part− number of parts
DEF
Dyson

rank = 3 rank = 1 rank = 0 rank = −1 rank = −3

EG

• All three congruences are explained by Dyson’s speculated crank, which was
found by Andrews and Garvan (1988).
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Modular forms

• P (x) =

∞∑
n=0

p(n)xn =
∏
k>1

1

1− xk
is a very special function.

∆(τ) =
q

P (q)24
= q

∏
k>1

(1− qk)24, q = e2πiτ
DEF

• ∆(τ + 1) = ∆(τ)

and, much less obviously, ∆(−1/τ) = τ12∆(τ)
• This makes ∆(τ) a modular form of weight 12 and level 1.

∆

(
aτ + b

cτ + d

)
= (cτ + d)12∆(τ),

(
a b
c d

)
∈ SL2(Z)

THM

“There’s a saying attributed to Eichler that there are five funda-
mental operations of arithmetic: addition, subtraction, multipli-
cation, division, and modular forms.

Andrew Wiles (BBC Interview, “The Proof”, 1997) ”An Analog of Euler’s Theorem on Integer Partitions Armin Straub
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Core partitions

• The integer partition (5, 3, 3, 1) has Young diagram:

• To each cell u in the diagram is assigned its hook.
• The hook length of u is the number of cells in its hook.

• A partition is t-core if no cell has hook length t.
For instance, the above partition is 7-core.

• A partition is (s, t)-core if it is both s-core and t-core.

If a partition is t-core, then it is also rt-core for r = 1, 2, 3 . . .LEM
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The number of core partitions

• Using the theory of modular forms, Granville and Ono (1996) showed:
(The case t = p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

For any n > 0 there exists a t-core partition of n whenever t > 4.THM

• If ct(n) is the number of t-core partitions of n, then

∞∑
n=0

ct(n)qn =
∞∏
n=1

(1− qtn)t

1− qn
.

∞∑
n=0

c2(n)qn =

∞∑
n=0

q
1
2
n(n+1),

∞∑
n=0

c3(n)qn = 1 + q + 2q2 + 2q4 + q5 + 2q6 + q8 + . . .

Can we give a combinatorial proof of the Granville–Ono result?Q

The total number of t-core partitions is infinite.COR

Though this is probably the most complicated way possible to see that. . .
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Counting core partitions

The number of (s, t)-core partitions is finite if and only if s and
t are coprime.

In that case, this number is

1

s+ t

(
s+ t

s

)
.

THM
Anderson

2002

• Olsson and Stanton (2007): the largest size of such partitions is 1
24
(s2− 1)(t2− 1).

• Note that the number of (s, s+ 1)-core partitions is the Catalan number

Cs =
1

s+ 1

(
2s

s

)
=

1

2s+ 1

(
2s+ 1

s

)
,

which also counts the number of Dyck paths of order s.
• Amdeberhan and Leven (2015) give generalizations to (s, s+ 1, . . . , s+ p)-core

partitions, including a relation to generalized Dyck paths.
• Ford, Mai and Sze (2009) show that the number of self-conjugate (s, t)-core

partitions is (
bs/2c+ bt/2c
bs/2c

)
.
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Core partitions into distinct parts

• Amdeberhan raises the interesting problem of counting the number of
special partitions which are t-core for certain values of t.

The number of (s, s+1)-core partitions into distinct parts equals
the Fibonacci number Fs+1.

CONJ

• He further conjectured that the largest possible size of an (s, s+ 1)-core
partition into distinct parts is bs(s+ 1)/6c, and that there is a unique such
largest partition unless s ≡ 1 modulo 3, in which case there are two
partitions of maximum size.

• Amdeberhan also conjectured that the total size of these partitions is∑
i+j+k=s+1

FiFjFk.

s=4
F5=5 ∅
s=5
F6=8 ∅

EG
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largest partition unless s ≡ 1 modulo 3, in which case there are two
partitions of maximum size.

• Amdeberhan also conjectured that the total size of these partitions is∑
i+j+k=s+1

FiFjFk.

s=4
F5=5 ∅
s=5
F6=8 ∅

EG
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A two-parameter generalization

Let Nd(s) be the number of (s, ds− 1)-core partitions into dis-
tinct parts. Then, Nd(1) = 1, Nd(2) = d and

Nd(s) = Nd(s− 1) + dNd(s− 2).

THM
S 2016

• The case d = 1 settles Amdeberhan’s conjecture.
• This special case was independently also proved by Xiong, who

further shows the other claims by Amdeberhan.

• The case d = 2 shows that there are 2s−1 many (s, 2s− 1)-core
partitions into distinct parts.

The first few generalized Fibonacci polynomials Nd(s) are

1, d, 2d, d(d+ 2), d(3d+ 2), d(d2 + 5d+ 2), . . .

For d = 1, we recover the usual Fibonacci numbers.
For d = 2, we find N2(s) = 2s−1.

EG
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The perimeter of a partition

The perimeter of a partition is the maximum hook length in λ.DEF

The partition has perimeter 7.
EG

• Introduced (up to a shift by 1) by Corteel and Lovejoy (2004) in their
study of overpartitions.

• The perimeter is the largest part plus the number of parts (minus 1).

• The rank is the largest part minus the number of parts.
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An analog of Euler’s theorem

The number of partitions into distinct parts with perimeter M
equals the number of partitions into odd parts with perimeter
M .

Both are enumerated by the Fibonacci number FM .

THM
S 2016

Partitions into distinct parts with perimeter 5:

Partitions into odd parts with perimeter 5:

In each case, there are F5 = 5 many of these partitions.

EG

• While it appears natural and is easily proved, we have been unable to find
this result in the literature.
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Partitions of bounded perimeter

• The following very simple observation connects core partitions with
partitions of bounded perimeter.

A partition into distinct parts is (s, s + 1)-core if and only if it
has perimeter strictly less than s.

LEM

Let λ be a partition into distinct parts.

• Assume λ has a cell u with hook length t > s.

• Since λ has distinct parts, the cell to the right of u has
hook length t− 1 or t− 2.

• It follows that λ has a hook of length s or s+ 1.

proof

An (s, ds− 1)-core partition into distinct parts has perimeter at
most ds− 2.

COR
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Summary

The number of (s, t)-core partitions is finite if and only if s and
t are coprime. In that case, this number is

1

s+ t

(
s+ t

s

)
.

THM
Anderson

2002

Let Nd(s) be the number of (s, ds− 1)-core partitions into dis-
tinct parts. Then, Nd(1) = 1, Nd(2) = d and

Nd(s) = Nd(s− 1) + dNd(s− 2).

THM
S 2016

• In particular, there are Fs many (s− 1, s)-core partitions into distinct parts,
• and 2s−1 many (s, 2s− 1)-core partitions into distinct parts.

What is the number of (s, t)-core partitions into distinct parts
in general?

Q
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Enumerating (s, t)-core partitions into distinct parts

What is the number of (s, t)-core partitions into distinct parts?Q

s\t 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 ∞ 2 ∞ 3 ∞ 4 ∞ 5 ∞ 6 ∞
3 1 2 ∞ 3 4 ∞ 5 6 ∞ 7 8 ∞
4 1 ∞ 3 ∞ 5 ∞ 8 ∞ 11 ∞ 15 ∞
5 1 3 4 5 ∞ 8 16 18 16 ∞ 21 38

6 1 ∞ ∞ ∞ 8 ∞ 13 ∞ ∞ ∞ 32 ∞
7 1 4 5 8 16 13 ∞ 21 64 50 64 114

8 1 ∞ 6 ∞ 18 ∞ 21 ∞ 34 ∞ 101 ∞
9 1 5 ∞ 11 16 ∞ 64 34 ∞ 55 256 ∞
10 1 ∞ 7 ∞ ∞ ∞ 50 ∞ 55 ∞ 89 ∞
11 1 6 8 15 21 32 64 101 256 89 ∞ 144

12 1 ∞ ∞ ∞ 38 ∞ 114 ∞ ∞ ∞ 144 ∞
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An easy exercise?

If s is odd, then the number of (s, s + 2)-core partitions into
distinct parts equals 2s−1.

CONJ

(s = 3) The four (3, 5)-core partitions into distinct parts are:

∅

(s = 5) The sixteen (5, 7)-core partitions into distinct parts are:

{}, {1}, {2}, {3}, {4}, {2, 1}, {3, 1}, {5, 1},
{3, 2}, {4, 2, 1}, {6, 2, 1}, {4, 3, 1}, {7, 3, 2},
{5, 4, 2, 1}, {8, 4, 3, 1}, {9, 5, 4, 2, 1}

EG

• The largest size of such partitions appears to be 1
384

(s2 − 1)(s+ 3)(5s+ 17).
• There appears to be a unique partition of that size (with 1

8
(s− 1)(s+ 5) many

parts and largest part 3
8
(s2 − 1)).

• Yan, Qin, Jin, Zhou (2016) have very recently proven these conjectures by
analyzing order ideals in an associated poset introduced by Anderson.
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Enumerating (s, t)-core partitions into odd parts

What is the number of (s, t)-core partitions into odd parts?Q

s\t 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 2 2 2 2 2 2 2 2 2 2 2

3 1 2 ∞ 4 4 ∞ 6 6 ∞ 8 8 ∞
4 1 2 4 ∞ 7 6 9 ∞ 11 10 13 ∞
5 1 2 4 7 ∞ 17 12 17 25 ∞ 41 31

6 1 2 ∞ 6 17 ∞ 31 21 ∞ 34 62 ∞
7 1 2 6 9 12 31 ∞ 80 43 78 87 97

8 1 2 6 ∞ 17 21 80 ∞ 152 78 124 ∞
9 1 2 ∞ 11 25 ∞ 43 152 ∞ 404 166 ∞
10 1 2 8 10 ∞ 34 78 78 404 ∞ 790 308

11 1 2 8 13 41 62 87 124 166 790 ∞ 2140

12 1 2 ∞ ∞ 31 ∞ 97 ∞ ∞ 308 2140 ∞
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

Armin Straub
Core partitions into distinct parts and an analog of Euler’s theorem
European Journal of Combinatorics, Vol. 57, 2016, p. 40-49
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