A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences

Number Theory Seminar University of Illinois at Urbana-Champaign

Armin Straub

Mar 16, 2017

University of South Alabama

[A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences](#page-89-0) Armin Straub

Core partitions

• To each cell u in the diagram is assigned its hook.

• To each cell u in the diagram is assigned its hook.

- To each cell u in the diagram is assigned its hook.
- The hook length of u is the number of cells in its hook.

- To each cell u in the diagram is assigned its hook.
- The hook length of u is the number of cells in its hook.
- A partition is *t*-core if no cell has hook length t . For instance, the above partition is 7-core.

- To each cell u in the diagram is assigned its hook.
- The hook length of u is the number of cells in its hook.
- A partition is *t*-core if no cell has hook length t . For instance, the above partition is 7-core.
- A partition is (s, t) -core if it is both s-core and t-core.

- To each cell u in the diagram is assigned its hook.
- The hook length of u is the number of cells in its hook.
- A partition is *t*-core if no cell has hook length t . For instance, the above partition is 7-core.
- A partition is (s, t) -core if it is both s-core and t-core.

LEM If a partition is *t*-core, then it is also rt-core for $r = 1, 2, 3...$

• Using the theory of modular forms, Granville and Ono (1996) showed:

(The case $t = p$ of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any $n \geq 0$ there exists a *t*-core partition of n whenever $t \geq 4$.

• Using the theory of modular forms, Granville and Ono (1996) showed:

(The case $t = p$ of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any $n \geq 0$ there exists a *t*-core partition of n whenever $t \geq 4$.

• If $c_t(n)$ is the number of t-core partitions of n, then

$$
\sum_{n=0}^{\infty} c_t(n)q^n = \prod_{n=1}^{\infty} \frac{(1-q^{tn})^t}{1-q^n}.
$$

$$
\sum_{n=0}^{\infty} c_2(n)q^n = \sum_{n=0}^{\infty} q^{\frac{1}{2}n(n+1)}, \quad \sum_{n=0}^{\infty} c_3(n)q^n = 1 + q + 2q^2 + 2q^4 + q^5 + 2q^6 + q^8 + \dots
$$

Using the theory of modular forms, Granville and Ono (1996) showed:

(The case $t = p$ of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any $n \geq 0$ there exists a *t*-core partition of n whenever $t \geq 4$.

• If $c_t(n)$ is the number of t-core partitions of n, then

$$
\sum_{n=0}^{\infty} c_t(n)q^n = \prod_{n=1}^{\infty} \frac{(1-q^{tn})^t}{1-q^n}.
$$

$$
\sum_{n=0}^{\infty} c_2(n)q^n = \sum_{n=0}^{\infty} q^{\frac{1}{2}n(n+1)}, \quad \sum_{n=0}^{\infty} c_3(n)q^n = 1 + q + 2q^2 + 2q^4 + q^5 + 2q^6 + q^8 + \dots
$$

Q Can we give a combinatorial proof of the Granville–Ono result?

Using the theory of modular forms, Granville and Ono (1996) showed:

(The case $t = p$ of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any $n \geq 0$ there exists a *t*-core partition of n whenever $t \geq 4$.

• If $c_t(n)$ is the number of t-core partitions of n, then

$$
\sum_{n=0}^{\infty} c_t(n)q^n = \prod_{n=1}^{\infty} \frac{(1-q^{tn})^t}{1-q^n}.
$$

$$
\sum_{n=0}^{\infty} c_2(n)q^n = \sum_{n=0}^{\infty} q^{\frac{1}{2}n(n+1)}, \quad \sum_{n=0}^{\infty} c_3(n)q^n = 1 + q + 2q^2 + 2q^4 + q^5 + 2q^6 + q^8 + \dots
$$

Q Can we give a combinatorial proof of the Granville–Ono result?

COR The total number of t -core partitions is infinite.

Though this is probably the most complicated way possible to see that. . .

[A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences](#page-0-0) Armin Straub Armin Straub

Counting core partitions

THM The number of (s, t) -core partitions is finite if and only if s and t are coprime. Anderson 2002

Counting core partitions

THM The number of (s, t) -core partitions is finite if and only if s and t are coprime. In that case, this number is Anderson 2002

$$
\frac{1}{s+t}\binom{s+t}{s}.
$$

The number of (s, t) -core partitions is finite if and only if s and t are coprime. In that case, this number is THM Anderson 2002

$$
\frac{1}{s+t}\binom{s+t}{s}.
$$

• Olsson and Stanton (2007): the largest size of such partitions is $\frac{1}{24}(s^2-1)(t^2-1)$.

The number of (s, t) -core partitions is finite if and only if s and t are coprime. In that case, this number is THM Anderson 2002

$$
\frac{1}{s+t}\binom{s+t}{s}.
$$

- Olsson and Stanton (2007): the largest size of such partitions is $\frac{1}{24}(s^2-1)(t^2-1)$.
- Note that the number of $(s, s + 1)$ -core partitions is the Catalan number

$$
C_s = \frac{1}{s+1} \binom{2s}{s} = \frac{1}{2s+1} \binom{2s+1}{s}.
$$

The number of (s, t) -core partitions is finite if and only if s and t are coprime. In that case, this number is THM Anderson 2002

$$
\frac{1}{s+t}\binom{s+t}{s}.
$$

- Olsson and Stanton (2007): the largest size of such partitions is $\frac{1}{24}(s^2-1)(t^2-1)$.
- Note that the number of $(s, s + 1)$ -core partitions is the Catalan number

$$
C_s = \frac{1}{s+1} \binom{2s}{s} = \frac{1}{2s+1} \binom{2s+1}{s}.
$$

Ford, Mai and Sze (2009) show that the number of self-conjugate (s, t) -core partitions is

$$
\begin{pmatrix}\n[s/2] + \lfloor t/2 \rfloor \\
[s/2]\n\end{pmatrix}.
$$

Core partitions into distinct parts

• Amdeberhan raises the interesting problem of counting the number of special partitions which are t -core for certain values of t .

CONJ The number of $(s, s+1)$ -core partitions into distinct parts equals the Fibonacci number F_{s+1} .

Core partitions into distinct parts

• Amdeberhan raises the interesting problem of counting the number of special partitions which are t -core for certain values of t .

CONJ The number of $(s, s+1)$ -core partitions into distinct parts equals the Fibonacci number F_{s+1} .

- He further conjectured that the largest possible size of an $(s, s + 1)$ -core partition into distinct parts is $|s(s + 1)/6|$, and that there is a unique such largest partition unless $s \equiv 1$ modulo 3, in which case there are two partitions of maximum size.
- Amdeberhan also conjectured that the total size of these partitions is

$$
\sum_{i+j+k=s+1} F_i F_j F_k.
$$

Core partitions into distinct parts

• Amdeberhan raises the interesting problem of counting the number of special partitions which are t -core for certain values of t .

CONJ The number of $(s, s+1)$ -core partitions into distinct parts equals the Fibonacci number F_{s+1} .

- He further conjectured that the largest possible size of an $(s, s + 1)$ -core partition into distinct parts is $|s(s + 1)/6|$, and that there is a unique such largest partition unless $s \equiv 1$ modulo 3, in which case there are two partitions of maximum size.
- Amdeberhan also conjectured that the total size of these partitions is

$$
\sum_{i+j+k=s+1} F_i F_j F_k.
$$

THM Let $N_d(s)$ be the number of $(s, ds - 1)$ -core partitions into distinct parts. Then, $N_d(1) = 1$, $N_d(2) = d$ and

$$
N_d(s) = N_d(s - 1) + dN_d(s - 2).
$$

- The case $d = 1$ settles Amdeberhan's conjecture.
- This special case was independently also proved by Xiong, who further shows the other claims by Amdeberhan.

THM Let $N_d(s)$ be the number of $(s, ds - 1)$ -core partitions into distinct parts. Then, $N_d(1) = 1$, $N_d(2) = d$ and

$$
N_d(s) = N_d(s - 1) + dN_d(s - 2).
$$

- The case $d = 1$ settles Amdeberhan's conjecture.
- This special case was independently also proved by Xiong, who further shows the other claims by Amdeberhan.

The first few generalized Fibonacci polynomials $N_d(s)$ are EG

1, d, 2d, $d(d+2)$, $d(3d+2)$, $d(d^2+5d+2)$, ...

For $d = 1$, we recover the usual Fibonacci numbers. For $d = 2$, we find $N_2(s) = 2^{s-1}$.

Nice proof (and more!) via abaci structures by Nath and Sellers (2016).

- The perimeter is the largest part plus the number of parts (minus 1).
- The rank is the largest part minus the number of parts.

Euler's theorem and a simple analog

Though natural and easily proved, we have been unable to find this result in the literature.

Euler's theorem and a simple analog

Though natural and easily proved, we have been unable to find this result in the literature.

Euler's theorem and a simple analog

Though natural and easily proved, we have been unable to find this result in the literature.

- Many refinements of Euler's theorem are known.
- number of partitions of size n into distinct parts with maximum part M EG Fine
	- $=$ number of partitions of size n into odd parts such that the maximum part plus twice the number of parts is $2M + 1$

- Many refinements of Euler's theorem are known.
- number of partitions of size n into distinct parts with maximum part M EG Fine
	- $=$ number of partitions of size n into odd parts such that the maximum part plus twice the number of parts is $2M + 1$
- Do similarly interesting refinements exist for partitions into distinct (respectively odd) parts with perimeter M ? Q

- Many refinements of Euler's theorem are known.
- number of partitions of size n into distinct parts with maximum part M EG Fine
	- $=$ number of partitions of size n into odd parts such that the maximum part plus twice the number of parts is $2M + 1$
- Do similarly interesting refinements exist for partitions into distinct (respectively odd) parts with perimeter M ? Q
- Fu and Tang (2016) indeed prove some such refinements.

- Many refinements of Euler's theorem are known.
- number of partitions of size n into distinct parts with maximum part M EG Fine
	- $=$ number of partitions of size n into odd parts such that the maximum part plus twice the number of parts is $2M + 1$
- Do similarly interesting refinements exist for partitions into distinct (respectively odd) parts with perimeter M ? Q
- Fu and Tang (2016) indeed prove some such refinements.

Q Just coincidence? What about other partition theorems?

[A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences](#page-0-0) Armin Straub

Euler's pentagonal number theorem

• Let $p_{d,e}(n)$ (respectively, $p_{d,o}(n)$) be the number of partitions of n into an even (respectively, odd) number of distinct parts.

$$
\mathsf{EG}_{\scriptscriptstyle{\mathsf{Euler}}} \hspace{1cm} p_{d,e}(n) - p_{d,o}(n) = \left\{ \begin{array}{ll} (-1)^m, & \text{if } n = \frac{1}{2}m(3m \pm 1), \\ 0, & \text{otherwise.} \end{array} \right.
$$

Euler's pentagonal number theorem

• Let $p_{d,e}(n)$ (respectively, $p_{d,o}(n)$) be the number of partitions of n into an even (respectively, odd) number of distinct parts.

$$
\begin{array}{ll}\n\text{EG} \\
\text{Euler} \\
\text{Pd}, e(n) - p_{d,o}(n) = \begin{cases}\n(-1)^m, & \text{if } n = \frac{1}{2}m(3m \pm 1), \\
0, & \text{otherwise.}\n\end{cases}\n\end{array}
$$

• Likewise, let $q_{d,e}(n)$ (respectively, $q_{d,o}(n)$) be the number of partitions of perimeter n into an even (respectively, odd) number of distinct parts.

EG
_{Pu, Tang}
₂₀₁₆
$$
q_{d,e}(n) - q_{d,o}(n) = \begin{cases} (-1)^m, & \text{if } n = \frac{1}{2}(6m - 3 \pm 1), \\ 0, & \text{otherwise.} \end{cases}
$$

Partitions of bounded perimeter

• The following very simple observation connects core partitions with partitions of bounded perimeter.

A partition into distinct parts is $(s, s + 1)$ -core if and only if it has perimeter strictly less than s . LEM
Partitions of bounded perimeter

• The following very simple observation connects core partitions with partitions of bounded perimeter.

A partition into distinct parts is $(s, s + 1)$ -core if and only if it has perimeter strictly less than s . LEM

proof Let λ be a partition into distinct parts.

- Assume λ has a cell u with hook length $t \geq s$.
- Since λ has distinct parts, the cell to the right of u has hook length $t - 1$ or $t - 2$.
- It follows that λ has a hook of length s or $s + 1$.

Partitions of bounded perimeter

• The following very simple observation connects core partitions with partitions of bounded perimeter.

LEM A partition into distinct parts is $(s, s + 1)$ -core if and only if it has perimeter strictly less than s .

proof Let λ be a partition into distinct parts.

- Assume λ has a cell u with hook length $t \geq s$.
- Since λ has distinct parts, the cell to the right of u has hook length $t - 1$ or $t - 2$.
- It follows that λ has a hook of length s or $s + 1$.

COR An $(s, ds - 1)$ -core partition into distinct parts has perimeter at most $ds - 2$.

Summary

The number of (s, t) -core partitions is finite if and only if s and t are coprime. In that case, this number is THM Anderson 2002

$$
\frac{1}{s+t}\binom{s+t}{s}.
$$

THM Let $N_d(s)$ be the number of $(s, ds - 1)$ -core partitions into distinct parts. Then, $N_d(1) = 1$, $N_d(2) = d$ and $N_d(s) = N_d(s - 1) + dN_d(s - 2).$ S 2016

- In particular, there are F_s many $(s 1, s)$ -core partitions into distinct parts,
- and 2^{s-1} many $(s, 2s 1)$ -core partitions into distinct parts.

What is the number of (s, t) -core partitions into distinct parts in general? Q

 $\mathbf Q$ What is the number of (s, t) -core partitions into distinct parts?

[A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences](#page-0-0) Armin Straub Armin Straub

THM 2^{s-1} many $(s, s + 2)$ -core partitions into distinct parts (s odd).

Q How many $(s, s + 3)$ -core partitions into distinct parts?

• $1, 3, \infty, 8, 18, \infty, 50, 101, \infty, 291, 557, \infty, 1642, 3048, \infty, 9116, 16607, \ldots$

THM 2^{s-1} many $(s, s + 2)$ -core partitions into distinct parts (s odd).

• The largest size of $(2n - 1, 2n + 1)$ -core partitions into distinct parts is

$$
\frac{1}{24}n(n^2-1)(5n+6).
$$

Now, also proven by Yan, Qin, Jin, Zhou (2016) and Zaleski, Zeilberger (2016).

Q How many $(s, s + 3)$ -core partitions into distinct parts?

• 1, 3, ∞ , 8, 18, ∞ , 50, 101, ∞ , 291, 557, ∞ , 1642, 3048, ∞ , 9116, 16607, ...

THM 2^{s-1} many $(s, s + 2)$ -core partitions into distinct parts (s odd).

• The largest size of $(2n - 1, 2n + 1)$ -core partitions into distinct parts is

$$
\frac{1}{24}n(n^2-1)(5n+6).
$$

Now, also proven by Yan, Qin, Jin, Zhou (2016) and Zaleski, Zeilberger (2016).

Q How many $(s, s + 3)$ -core partitions into distinct parts?

- $1, 3, \infty, 8, 18, \infty, 50, 101, \infty, 291, 557, \infty, 1642, 3048, \infty, 9116, 16607, \ldots$
- The largest size of $(3n 2, 3n + 1)$ -core partitions into distinct parts appears to be

$$
\frac{1}{24}n(n^2-1)(9n+10).
$$

THM 2^{s-1} many $(s, s + 2)$ -core partitions into distinct parts (s odd).

• The largest size of $(2n - 1, 2n + 1)$ -core partitions into distinct parts is

$$
\frac{1}{24}n(n^2-1)(5n+6).
$$

Now, also proven by Yan, Qin, Jin, Zhou (2016) and Zaleski, Zeilberger (2016).

Q How many $(s, s + 3)$ -core partitions into distinct parts?

- $1, 3, \infty, 8, 18, \infty, 50, 101, \infty, 291, 557, \infty, 1642, 3048, \infty, 9116, 16607, \ldots$
- The largest size of $(3n 2, 3n + 1)$ -core partitions into distinct parts appears to be

$$
\frac{1}{24}n(n^2-1)(9n+10).
$$

The largest size of $(3n - 1, 3n + 2)$ -core partitions into distinct parts appears to be

$$
\frac{1}{24}n(9n^3+38n^2+39n-14).
$$

The size of a random core partition

The size of a random core partition

DEF	$X_{s,t}$: size of a (s, t) -core partition\n
$X_{s,t}^{(d)}$: size of a (s, t) -core partition into distinct parts	
EG	$E(X_{s,t}) = \frac{(s-1)(t-1)(s+t+1)}{24}$	conjectured by Armstrong first proved by Johnson first proved by Johnson
For comparison, largest size is $\frac{1}{24}(s^2 - 1)(t^2 - 1)$.	(Oisson and Stanton, 2007)	
EG	$E(X_{s,s+1}^{(d)}) = \frac{1}{F_{s+1}} \sum_{i+j+k=s+1} F_i F_j F_k$	conjectured by Amdeberhan first proved by Xiong first proved by Xiong
$= \frac{1}{50F_{s+1}} ((5s - 6)sF_{s+1} - 6(s + 1)F_s)$		

$$
\begin{array}{|l|l|} \hline \text{EG} & E(X_{s,s+2}^{(d)})=\frac{1}{128}\left((s-1)(5s^2+17s+16)\right) & \text{Zaleski-Zeilberger} \end{array}
$$

The size of a random core partition

- Zeilberger (2015): explicit moments for $X_{s,t}$
- \bullet Zaleski (2016): explicit moments for $X_{s,s+1}^{(d)}$
- \bullet Zaleski-Zeilberger (2016): explicit moments for $X_{s,s+2}^{(d)}$

CONJ Centralizing and standardizing, the distribution of $X_{s,t}$ as $s, t \to \infty$ with $s - t$ fixed agrees with the one of 1 $4\pi^2$ $\sum_{n=1}^{\infty} A_n^2 + B_n^2$ $n=1$ $\frac{n^2}{n^2}$, A_n, B_n independent, $N(0, 1)$. **Zeilberger** $\textsf{CONJ}\over \textsf{Zaleski}}$ The limiting distribution of $X_{s,s+1}^{(d)}$ is normal. $\frac{\mathbf{Q}}{\mathbf{Z}_{\text{allbs}}^{|\mathbf{Q}|}}$ The limiting distribution of $X_{s,s+2}^{(d)}$ is not normal. What is it? **Zeilberger**

[A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences](#page-0-0) Armin Straub Armin Straub

$\mathbf Q$ What is the number of (s, t) -core partitions into odd parts?

[A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences](#page-0-0) Armin Straub Armin Straub

A modular supercongruence for $_6F_5$: An Apéry-like story

$$
{}_{6}F_{5}\left(\begin{matrix}\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2} \\ 1,1,1,1,1\end{matrix}\bigg|1\right)_{p-1}\equiv b(p)\ (\mathrm{mod}\ p^{3})
$$

Joint work with:

Robert Osburn Wadim Zudilin (University College Dublin) (University of Newcastle/

Radboud Universiteit)

 17

Apéry numbers and the irrationality of $\zeta(3)$

• The Apérv numbers $1, 5, 73, 1445, \ldots$ $A(n) = \sum_{n=1}^{n}$ $k=0$ ˆ \boldsymbol{n} k $\sum^2 (n+k)$ k $\sqrt{2}$ satisfy

 $(n+1)^3 A(n+1) = (2n+1)(17n^2 + 17n + 5)A(n) - n^3 A(n-1).$

Apéry numbers and the irrationality of $\zeta(3)$

• The Apéry numbers $1, 5, 73, 1445, \ldots$ $A(n) = \sum_{n=1}^{n}$ $k=0$ ˆ \boldsymbol{n} k $\sum^2 (n+k)$ k $\sqrt{2}$ satisfy

$$
(n+1)3A(n+1) = (2n+1)(17n2 + 17n + 5)A(n) - n3A(n-1).
$$

THM $\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$ is irrational.

proof The same recurrence is satisfied by the "near"-integers $B(n) = \sum_{n=1}^n$ $k=0$ n k $\sum^2/n+k$ k $\frac{1}{2} \left(\frac{n}{2} \right)$ $j=1$ 1 $\frac{1}{j^3}$ + \boldsymbol{k} $m=1$ $(-1)^{m-1}$ $2m³$ $\frac{-1}{\sqrt{n}}$ $\frac{n}{m}$ $\binom{n+m}{m}$ $\frac{1}{\lambda}$. \mathbf{z} Then, $\frac{B(n)}{A(n)} \to \zeta(3)$. But too fast for $\zeta(3)$ to be rational.

Hypergeometric series

Trivially, the Apéry numbers have the representation $A(n) = \sum_{n=1}^{n}$ $k=0$ ˆ n k $\sum^2/n+k$ k $\sqrt{2}$ $=$ 4 F_3 ˆ $-n, -n, n + 1, n + 1$ 1, 1, 1 \vert_1 ˙ . EG

• Here, $_4F_3$ is a hypergeometric series: ˆ ˇ

$$
{}_pF_q\left(\begin{matrix}a_1,\ldots,a_p\\b_1,\ldots,b_q\end{matrix}\bigg|z\right)=\sum_{k=0}^\infty\frac{(a_1)_k\cdots(a_p)_k}{(b_1)_k\cdots(b_q)_k}\frac{z^n}{n!}.
$$

Hypergeometric series

Trivially, the Apéry numbers have the representation $A(n) = \sum_{n=1}^{n}$ $k=0$ ˆ n k $\sum^2/n+k$ k $\sqrt{2}$ $= {}_4F_3 \left(\begin{array}{c} -n, -n, n+1, n+1 \\ 1, 1, 1 \end{array} \right)$ ˆ 1, 1, 1 ˇ \vert_1 ˙ . EG

• Here, $_4F_3$ is a hypergeometric series: ˆ ˇ

$$
{}_pF_q\left(\begin{matrix}a_1,\ldots,a_p\\b_1,\ldots,b_q\end{matrix}\bigg|z\right)=\sum_{k=0}^\infty\frac{(a_1)_k\cdots(a_p)_k}{(b_1)_k\cdots(b_q)_k}\frac{z^n}{n!}.
$$

Similary, we have the truncated hypergeometric series

$$
{}_pF_q\left(\begin{matrix}a_1,\ldots,a_p\\b_1,\ldots,b_q\end{matrix}\bigg|z\right)_M=\sum_{k=0}^M\frac{(a_1)_k\cdots(a_p)_k}{(b_1)_k\cdots(b_q)_k}\frac{z^n}{n!}.
$$

A first connection to modular forms

• The Apéry numbers $A(n)$ satisfy 1, 5, 73, 1145, ...

$$
\frac{\eta^{7}(2\tau)\eta^{7}(3\tau)}{\eta^{5}(\tau)\eta^{5}(6\tau)} = \sum_{n\geqslant 0} A(n) \left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)} \right)^{n} \dots
$$
\n
$$
\frac{1+5q+13q^{2}+23q^{3}+O(q^{4})}{q-12q^{2}+66q^{3}+O(q^{4})} \dots
$$
\n
$$
q = e^{2\pi i \tau}
$$

A first connection to modular forms

• The Apéry numbers $A(n)$ satisfy 1, 5, 73, 1145, ...

$$
\frac{\eta^{7}(2\tau)\eta^{7}(3\tau)}{\eta^{5}(\tau)\eta^{5}(6\tau)} = \sum_{n\geq 0} A(n) \left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)} \right)^{n}
$$

\n
$$
\longrightarrow_{\text{modular form}}
$$

\n
$$
1 + 5q + 13q^{2} + 23q^{3} + O(q^{4})
$$

\n
$$
q - 12q^{2} + 66q^{3} + O(q^{4})
$$

\n
$$
q = e^{2\pi i \tau}
$$

EG As a consequence, with
$$
z = \sqrt{1 - 34x + x^2}
$$
,
\n
$$
\sum_{n\geq 0} A(n)x^n = \frac{17 - x - z}{4\sqrt{2}(1 + x + z)^{3/2}} {}_3F_2\left(\frac{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{1, 1} \middle| - \frac{1024x}{(1 - x + z)^4}\right).
$$

Context: $f(\tau)$ modular form of (integral) weight k $x(\tau)$ modular function $y(x)$ such that $y(x(\tau)) = f(\tau)$

Then $y(x)$ satisfies a linear differential equation of order $k + 1$.

THM For primes $p > 2$, the Apéry numbers satisfy $A\left(\frac{p-1}{2}\right)$ $\left(\frac{-1}{2}\right) \equiv a(p) \quad (\text{mod } p^2)$ where $a(n)$ are the Fourier coefficients of the Hecke eigenform $\eta(2\tau)^4 \eta(4\tau)^4 =$ ∞ $n=1$ $a(n)q^n$ of weight 4 for the modular group $\Gamma_0(8)$. Ahlgren– Ono '00

- conjectured by Beukers '87, and proved modulo p
- similar congruences modulo p for other Apéry-like numbers

Fourier coefficients $a(p)$

Apéry sequence $A(n)$

Kilbourn's extension of the Ahlgren–Ono supercongruence

THM Kilbourn 2006

$$
{}_4F_3\left(\begin{matrix} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ 1, 1, 1 \end{matrix} \bigg| 1 \right)_{p-1} \equiv a(p) \pmod{p^3},
$$

for primes $p > 2$. Again, $a(n)$ are the Fourier coefficients of

$$
\eta(2\tau)^4 \eta(4\tau)^4 = \sum_{n=1}^{\infty} a(n)q^n.
$$

THM Kilbourn 2006

$$
{}_4F_3\left(\begin{matrix} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ 1, 1, 1 \end{matrix} \bigg| 1 \right)_{p-1} \equiv a(p) \pmod{p^3},
$$

for primes $p > 2$. Again, $a(n)$ are the Fourier coefficients of

$$
\eta(2\tau)^4 \eta(4\tau)^4 = \sum_{n=1}^{\infty} a(n)q^n.
$$

- This result proved the first of 14 related supercongruences conjectured by Rodriguez-Villegas (2001) between
	- truncated hypergeometric series $_4F_3$ and
	- Fourier coefficients of modular forms of weight 4.
- Despite considerable progress, 11 of these remain open.

McCarthy (2010), Fuselier-McCarthy (2016) prove one each; McCarthy (2010) proves "half" of all 14.

• The 14 supercongruence conjectures were complemented with $4 + 4$ conjectures for ${}_2F_1$ and ${}_3F_2$.

THM OSZ 2017

$$
{}_{6}F_{5}\left(\begin{matrix}\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2} \\ 1,1,1,1,1\end{matrix}\Big|1\right)_{p-1}\equiv b(p)\pmod{p^{3}},
$$

for primes $p > 2$. Here, $b(n)$ are the Fourier coefficients of

$$
\eta(\tau)^8 \eta(4\tau)^4 + 8\eta(4\tau)^{12} = \eta(2\tau)^{12} + 32\eta(2\tau)^4 \eta(8\tau)^8 = \sum_{n=1}^{\infty} b(n)q^n,
$$

the unique newform in $S_6(\Gamma_0(8))$.

THM **OSZ** 2017

$$
{}_{6}F_{5}\left(\begin{matrix}\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2} \\ 1,1,1,1,1\end{matrix}\Big|1\right)_{p-1}\equiv b(p) \pmod{p^{3}},
$$

for primes $p > 2$. Here, $b(n)$ are the Fourier coefficients of

$$
\eta(\tau)^8 \eta(4\tau)^4 + 8\eta(4\tau)^{12} = \eta(2\tau)^{12} + 32\eta(2\tau)^4 \eta(8\tau)^8 = \sum_{n=1}^{\infty} b(n)q^n,
$$

the unique newform in $S_6(\Gamma_0(8))$.

• Conjectured by Mortenson based on numerical evidence, which further suggests it holds modulo $p^{5}.$

THM O_{SZ} 2017

$$
{}_{6}F_{5}\left(\begin{array}{c} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ 1, 1, 1, 1, 1 \end{array} \Big| 1\right)_{p-1} \equiv b(p) \pmod{p^{3}},
$$

for primes $p > 2$. Here, $b(n)$ are the Fourier coefficients of

$$
\eta(\tau)^8 \eta(4\tau)^4 + 8\eta(4\tau)^{12} = \eta(2\tau)^{12} + 32\eta(2\tau)^4 \eta(8\tau)^8 = \sum_{n=1}^{\infty} b(n)q^n,
$$

the unique newform in $S_6(\Gamma_0(8))$.

- Conjectured by Mortenson based on numerical evidence, which further suggests it holds modulo $p^{5}.$
- A result of Frechette, Ono and Papanikolas expresses the $b(p)$ in terms of Gaussian hypergeometric functions.
- Osburn and Schneider determined the resulting Gaussian hypergeometric functions modulo p^3 in terms of sums involving harmonic sums.

A brief impression of the available ingredients

THM In terms of Gaussian hypergeometric series,

$$
b(p) = -p^5 {}_6F_5(1) + p^4 {}_4F_3(1) + p^3 {}_2F_1(1) + p^2.
$$

- Conjectured by Koike; proven by Frechette, Ono and Papanikolas (2004).
- Here, ϕ_p is the quadratic character mod p, ϵ_p the trivial character, and ˆ ˙

$$
{}_{n+1}F_n(x) = {}_{n+1}F_n\left(\begin{matrix} \phi_p, \phi_p, \dots, \phi_p \\ \epsilon_p, \dots, \epsilon_p \end{matrix} \bigg| \, x\right)_p,
$$

the finite field version of

$$
_{n+1}F_n\bigg(\begin{matrix}\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2}\\1,\ldots,1\end{matrix}\bigg|\,x\bigg).
$$

A brief impression of the available ingredients

THM In terms of Gaussian hypergeometric series,

$$
b(p) = -p^5 {}_6F_5(1) + p^4 {}_4F_3(1) + p^3 {}_2F_1(1) + p^2.
$$

- Conjectured by Koike; proven by Frechette, Ono and Papanikolas (2004).
- \bullet Here, ϕ_p is the quadratic character mod p , ϵ_p the trivial character, and

$$
{}_{n+1}F_n(x) = {}_{n+1}F_n\left(\begin{matrix} \phi_p, \phi_p, \dots, \phi_p \\ \epsilon_p, \dots, \epsilon_p \end{matrix} \bigg| x\right)_p,
$$

the finite field version of

$$
_{n+1}F_n\bigg(\begin{matrix}\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2}\\1,\ldots,1\end{matrix}\bigg|\,x\bigg).
$$

• Since $p^{n}{}_{n+1}F_{n}(x) \in \mathbb{Z}$, it follows easily that

$$
b(p) \equiv -p^5 {}_6F_5(1) \equiv {}_6F_5\left(\begin{array}{c} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ 1, 1, 1, 1, 1 \end{array} \middle| 1\right)_{p-1} \pmod{p}.
$$
THM For primes
$$
p > 2
$$
 and $\ell \ge 2$,
\n^{Obl}
\nSchmidt
\n2009\n
$$
-p^{2\ell-1} 2\ell F_{2\ell-1}(1) \equiv p^2 X_{\ell}(p) + pY_{\ell}(p) + Z_{\ell}(p) \pmod{p^3}.
$$

• With $m = (p - 1)/2$, the right-hand sides are

$$
Z_{\ell}(p) = {}_{2\ell}F_{2\ell-1}\left(\begin{array}{cc} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ 1, 1, 1, 1, 1 \end{array} \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right)_m,
$$

THM For primes
$$
p > 2
$$
 and $\ell \geq 2$,

\nSchmidt parameter 2009

\n $-p^{2\ell-1} \cdot 2\ell F_{2\ell-1}(1) \equiv p^2 X_\ell(p) + pY_\ell(p) + Z_\ell(p) \pmod{p^3}$.

• With $m = (p - 1)/2$, the right-hand sides are

$$
Z_{\ell}(p) = {}_{2\ell}F_{2\ell-1}\left(\frac{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}}{1,1,1,1,1}\bigg|1\right)_{m},
$$

\n
$$
Y_{\ell}(p) = \sum_{k=0}^{m} (-1)^{\ell k} {m+k \choose k}^{\ell} {m \choose k}^{\ell} (1 - \ell k(2H_{k} - H_{m+k} - H_{m-k}),
$$

\n
$$
X_{\ell}(p) = \sum_{k=0}^{m} (-1)^{\ell k} {m+k \choose k}^{\ell} {m \choose k}^{\ell} (1 + 4\ell k(H_{m+k} - H_{k}) + 2\ell^{2}k^{2}(H_{m+k} - H_{k})^{2} - \ell k^{2}(H_{m+k}^{(2)} - H_{k}^{(2)})).
$$

A harmonic identity

 $\frac{n}{\sqrt{2}}$ $k=0$ ˆ $n + k$ k $\sqrt{\frac{2}{n}}$ k $\sqrt{2}$ $1 - 2k(2H_k - H_{n+k} - H_{n-k})$ ˘ $= 1$ THM

$$
\sum_{k=0}^{n} {n+k \choose k}^2 {n \choose k}^2 (1 - 2k(2H_k - H_{n+k} - H_{n-k})) = 1
$$

• As Nesterenko (1996), consider the partial fraction decomposition

$$
R(t) = \frac{\prod_{j=1}^{n} (t-j)^2}{\prod_{j=0}^{n} (t+j)^2} = \sum_{k=0}^{n} \left(\frac{A_k}{(t+k)^2} + \frac{B_k}{t+k} \right).
$$

$$
\sum_{k=0}^{n} {n+k \choose k}^2 {n \choose k}^2 (1 - 2k(2H_k - H_{n+k} - H_{n-k})) = 1
$$

• As Nesterenko (1996), consider the partial fraction decomposition

$$
R(t) = \frac{\prod_{j=1}^{n} (t-j)^2}{\prod_{j=0}^{n} (t+j)^2} = \sum_{k=0}^{n} \left(\frac{A_k}{(t+k)^2} + \frac{B_k}{t+k} \right).
$$

• One finds

$$
A_k = {n+k \choose k}^2 {n \choose k}^2,
$$

\n
$$
B_k = 2A_k (2H_k - H_{n+k} - H_{n-k}).
$$

$$
\sum_{k=0}^{n} {n+k \choose k}^2 {n \choose k}^2 (1 - 2k(2H_k - H_{n+k} - H_{n-k})) = 1
$$

• As Nesterenko (1996), consider the partial fraction decomposition

$$
R(t) = \frac{\prod_{j=1}^{n} (t-j)^2}{\prod_{j=0}^{n} (t+j)^2} = \sum_{k=0}^{n} \left(\frac{A_k}{(t+k)^2} + \frac{B_k}{t+k} \right).
$$

• One finds

$$
A_k = {n+k \choose k}^2 {n \choose k}^2,
$$

\n
$$
B_k = 2A_k (2H_k - H_{n+k} - H_{n-k}).
$$

• The residue sum theorem applied to $tR(t)$ implies:

$$
\sum_{k=0}^{n} (A_k - kB_k) = \sum_{\text{finite poles } x} \text{Res}_x tR(t) = -\text{Res}_\infty tR(t) = 1
$$

$$
\sum_{k=0}^{n} {n+k \choose k}^2 {n \choose k}^2 (1 - 2k(2H_k - H_{n+k} - H_{n-k})) = 1
$$

• As Nesterenko (1996), consider the partial fraction decomposition

$$
R(t) = \frac{\prod_{j=1}^{n} (t-j)^2}{\prod_{j=0}^{n} (t+j)^2} = \sum_{k=0}^{n} \left(\frac{A_k}{(t+k)^2} + \frac{B_k}{t+k} \right).
$$

k

,

.

• One finds $A_k =$ $n + k$ k $B_k = 2A_k \left(2H_k - H_{n+k} - H_{n-k} \right)$ \mathbf{v}

• The residue sum theorem applied to $tR(t)$ implies:

$$
\sum_{k=0}^{n} (A_k - kB_k) = \sum_{\text{finite poles } x} \text{Res}_x tR(t) = -\text{Res}_\infty tR(t) = 1
$$

• Only needed modulo p^2 and $n = (p-1)/2$ for Kilbourn's congruence.

• Using identities similarly obtained from partial fractions, the $_6F_5$ congruence can be reduced to:

$$
\sum_{\substack{0 \le z \\ 2017}}^n \sum_{k=0}^n (-1)^k {n+k \choose k}^3 {n \choose k}^3 (1-3k(2H_k - H_{n+k} - H_{n-k}))
$$

=
$$
\sum_{k=0}^n {n+k \choose k}^2 {n \choose k}^2 \pmod{p^2}
$$

for primes $p > 2$ and $n = (p-1)/2$.

• Using identities similarly obtained from partial fractions, the $_6F_5$ congruence can be reduced to:

$$
\sum_{\substack{0 \le z \\ 2017}}^n \sum_{k=0}^n (-1)^k {n+k \choose k}^3 {n \choose k}^3 (1-3k(2H_k - H_{n+k} - H_{n-k}))
$$

=
$$
\sum_{k=0}^n {n+k \choose k}^2 {n \choose k}^2 \pmod{p^2}
$$

for primes $p > 2$ and $n = (p-1)/2$.

• While identities can (now) be verified algorithmically, no algorithms are available for proving such congruences.

$$
\underset{\text{2003}}{\text{DEF}} \underset{\text{2003}}{\text{PEFE}} \qquad \qquad C_{\ell}(n) = \sum_{k=0}^{n} {n \choose k}^{\ell} \left(1 - \ell k (H_k - H_{n-k})\right)
$$

• These are integer sequences: $C_1(n) = 1, C_2(n) = 0, C_3(n) = (-1)^n$

$$
C_4(n) = (-1)^n \binom{2n}{n}, \quad C_5(n) = (-1)^n \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}
$$

$$
\underset{\text{2003}}{\text{DEF}} \underset{\text{2003}}{\text{Paule.}} \qquad \qquad C_{\ell}(n) = \sum_{k=0}^{n} {n \choose k}^{\ell} \left(1 - \ell k (H_k - H_{n-k})\right)
$$

• These are integer sequences: $C_1(n) = 1, C_2(n) = 0, C_3(n) = (-1)^n$

$$
C_4(n) = (-1)^n \binom{2n}{n}, \quad C_5(n) = (-1)^n \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}
$$

$$
\underset{\substack{\text{OSL 17:} \\ \text{Chu, De} \\ \text{Dono}}}^{\text{LEM}} C_6(n) = (-1)^n \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k} \binom{2k}{n}
$$

• Open question: are there single-sum hypergeometric expressions for $C_{\ell}(n)$ when $\ell \geq 7$?

LEM For all odd primes
$$
p
$$
,
\n
$$
A\left(\frac{p-1}{2}\right) \equiv C_6\left(\frac{p-1}{2}\right) \pmod{p^2}.
$$

- Modular parametrizations by weight 2 modular forms of level 6 and 7.
- In other words,

$$
\sum_{k=0}^{n} {n \choose k}^{2} {n+k \choose k}^{2} \equiv (-1)^{n} \sum_{k=0}^{n} {n \choose k}^{2} {n+k \choose k} {2k \choose n} \pmod{p^{2}}.
$$

LEM For all odd primes
$$
p
$$
,
$$
A\left(\frac{p-1}{2}\right) \equiv C_6\left(\frac{p-1}{2}\right) \pmod{p^2}.
$$

- Modular parametrizations by weight 2 modular forms of level 6 and 7.
- In other words.

$$
\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 \equiv (-1)^n \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k} {2k \choose n} \pmod{p^2}.
$$

• Proving this congruence is easy once we replace the right-hand side with

$$
C_6(n) = \sum_{k=0}^{n} (-1)^k {3n+1 \choose n-k} {n+k \choose k}^3.
$$

• Again, let us lament the lack of an algorithmic approach to such congruences.

[A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences](#page-0-0) Armin Straub Armin Straub

An irrational equality

LEM

$$
A(n) = \frac{(-1)^n}{2} \sum_{k=0}^n {n+k \choose n} {2n-k \choose n} {n \choose k}^4
$$

× $(2 + (n-2k)(5H_k - 5H_{n-k} - H_{n+k} + H_{2n-k}))$

LEM

$$
A(n) = \frac{(-1)^n}{2} \sum_{k=0}^n {n+k \choose n} {2n-k \choose n} {n \choose k}^4
$$

× $(2 + (n-2k)(5H_k - 5H_{n-k} - H_{n+k} + H_{2n-k}))$

• This arises from a construction of linear forms in $\zeta(3)$ due to Ball. If $n!^2(2t+n)\prod^n_{i=1}(t-i)$

$$
\hat{R}(t) = \frac{n!^2 (2t + n) \prod_{j=1}^n (t - j) \cdot \prod_{j=1}^n (t + n + j)}{\prod_{j=0}^n (t + j)^4}
$$

$$
= \sum_{k=0}^n \left(\frac{\hat{A}_k}{(t + k)^4} + \frac{\hat{B}_k}{(t + k)^3} + \frac{\hat{C}_k}{(t + k)^2} + \frac{\hat{D}_k}{t + k} \right),
$$

then \sum_{1}^{∞} $t = 1$ $\widehat{R}(t) = u_n \zeta(3) + v_n.$

LEM

$$
A(n) = \frac{(-1)^n}{2} \sum_{k=0}^n {n+k \choose n} {2n-k \choose n} {n \choose k}^4
$$

$$
\times (2 + (n-2k)(5H_k - 5H_{n-k} - H_{n+k} + H_{2n-k}))
$$

• This arises from a construction of linear forms in $\zeta(3)$ due to Ball. If $n!^2(2t+n)\prod^n_{i=1}(t-i)$

$$
\hat{R}(t) = \frac{n!^2 (2t + n) \prod_{j=1}^n (t - j) \cdot \prod_{j=1}^n (t + n + j)}{\prod_{j=0}^n (t + j)^4}
$$
\n
$$
= \sum_{k=0}^n \left(\frac{\hat{A}_k}{(t + k)^4} + \frac{\hat{B}_k}{(t + k)^3} + \frac{\hat{C}_k}{(t + k)^2} + \frac{\hat{D}_k}{t + k} \right),
$$

then \sum_{1}^{∞} $t = 1$ $\widehat{R}(t) = u_n \zeta(3) + v_n.$

• Remarkably, the linear forms agree with the ones obtained from Nesterenko's construction: \boldsymbol{n}

$$
A(n) = \frac{1}{2}u_n = \frac{1}{2}\sum_{k=0}^{n} \hat{B}_k
$$

• Can we extend the congruence

$$
{}_{6}F_{5}\left(\begin{matrix}\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2} \\ 1,1,1,1,1\end{matrix}\bigg|1\right)_{p-1}\equiv b(p)\pmod{p^{3}},
$$

and show that it holds modulo $p^5\overline{?}$

Special relevance of p^3 : by Weil's bounds, $\left|b(p)\right| < 2p^{5/2}$

- Can the algorithmic approaches for $A = B$ be adjusted to $A = B$?
- Why do these supercongruences hold?

Very promising explanation suggested by Roberts, Rodriguez-Villegas, Watkins (2017) in terms of gaps between Hodge numbers of an associated motive.

THANK YOU!

Slides for this talk will be available from my website: <http://arminstraub.com/talks>

Armin Straub Core partitions into distinct parts and an analog of Euler's theorem European Journal of Combinatorics, Vol. 57, 2016, p. 40-49

Robert Osburn, Armin Straub and Wadim Zudilin A modular supercongruence for $6F5$: An Apéry-like story Preprint, 2017. arXiv:1701.04098

[A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences](#page-0-0) Armin Straub Armin Straub