ICOMAS 2018: Special Session on Analytic Number Theory
The University of Memphis

Armin Straub

May 8, 2018

University of South Alabama

based on joint work with

Frits Beukers (Utrecht University) and

Marc Houben (Utrecht University)

Introduction: Diagonals

Given a series

$$F(x_1, \dots, x_d) = \sum_{n_1, \dots, n_d \ge 0} a(n_1, \dots, n_d) x_1^{n_1} \cdots x_d^{n_d},$$

its diagonal coefficients are the coefficients $a(n, \ldots, n)$.

EG The diagonal coefficients of

$$\frac{1}{1 - x - y} = \sum_{n=0}^{\infty} (x + y)^n$$

are the central binomial coefficients $\binom{2n}{n}$.

Introduction: Diagonals

Given a series

$$F(x_1, \dots, x_d) = \sum_{n_1, \dots, n_d \ge 0} a(n_1, \dots, n_d) x_1^{n_1} \cdots x_d^{n_d},$$

its diagonal coefficients are the coefficients $a(n, \ldots, n)$.

EG The diagonal coefficients of

$$\frac{1}{1 - x - y} = \sum_{n=0}^{\infty} (x + y)^n$$

are the central binomial coefficients $\binom{2n}{n}$. For comparison, their univariate generating function is

$$\sum_{n=0}^{\infty} \binom{2n}{n} x^n = \frac{1}{\sqrt{1-4x}}.$$

Gauss congruences Armin Straub

Introduction: Rational generating functions

EG The Lucas numbers L_n have GF $\frac{2-x}{1-x-x^2}$. $L_{n+1} = L_n + L_{n-1}$ $L_0 = 2, L_1 = 1$

The sequences with rational GF are precisely the C-finite ones.

Introduction: Rational generating functions

The Lucas numbers L_n have GF $\frac{2-x}{1-x-x^2}$.

- $L_{n+1} = L_n + L_{n-1}$ $L_0 = 2, L_1 = 1$
- The sequences with rational GF are precisely the C-finite ones.
- The **Delannoy numbers** have GF $\frac{1}{\sqrt{1-6x+x^2}}$. $D_n = \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k}$ They are the diagonal of $\frac{1}{1-x-y-xy}$.
- The sequences with algebraic GF are precisely the diagonals of 2-variable rational functions.

Introduction: Rational generating functions

The Lucas numbers L_n have GF $\frac{2-x}{1-x-x^2}$.

- $L_{n+1} = L_n + L_{n-1}$ $L_0 = 2, L_1 = 1$
- The sequences with rational GF are precisely the C-finite ones.
- The Delannoy numbers have GF $\frac{1}{\sqrt{1-6x+x^2}}$. $D_n = \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k}$ They are the diagonal of $\frac{1}{1-x-y-xy}$.
- The sequences with algebraic GF are precisely the diagonals of 2-variable rational functions.

THM Gessel, Zeilberger, Lipshitz 1981–88

The diagonal of a rational function is D-finite.

More generally, the diagonal of a D-finite function is D-finite. $F \in K[[x_1,\ldots,x_d]]$ is D-finite if its partial derivatives span a finite-dimensional vector space over $K(x_1,\ldots,x_d)$.

Introduction: Franel numbers

EG

The **Franel numbers** $\sum_{k=0}^{n} {n \choose k}^3$ are the diagonal of

$$\frac{1}{1-x-y-z+4xyz}.$$

Their GF is

$$\frac{1}{1-2x} \, _2F_1\left(\begin{array}{c} \frac{1}{3}, \frac{2}{3} \\ 1 \end{array} \middle| \frac{27x^2}{(1-2x)^3}\right).$$

Introduction: Franel numbers

EG

The **Franel numbers** $\sum_{k=0}^{n} {n \choose k}^3$ are the diagonal of

$$\frac{1}{1-x-y-z+4xyz}.$$

Their GF is

$$\frac{1}{1-2x} \, _2F_1\left(\begin{array}{c} \frac{1}{3}, \frac{2}{3} \\ 1 \end{array} \middle| \frac{27x^2}{(1-2x)^3}\right).$$

· Not at all unique! The Franel numbers are also the diagonal of

$$\frac{1}{(1-x)(1-y)(1-z) - xyz}.$$

The **Apéry numbers** are the diagonal coefficients of

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}.$$

S 2014

The **Apéry numbers** are the diagonal coefficients of

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}.$$

• Univariate generating function:

$$\sum_{n\geqslant 0} A(n)x^n = \frac{17 - x - z}{4\sqrt{2}(1 + x + z)^{3/2}} \, {}_{3}F_{2}\left(\frac{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{1, 1} \middle| -\frac{1024x}{(1 - x + z)^4}\right),$$

where
$$z = \sqrt{1 - 34x + x^2}$$
.

S 2014

The **Apéry numbers** are the diagonal coefficients of

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}.$$

• Univariate generating function:

$$\sum_{n\geq 0} A(n)x^n = \frac{17 - x - z}{4\sqrt{2}(1 + x + z)^{3/2}} \, {}_{3}F_{2}\left(\frac{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{1, 1} \middle| -\frac{1024x}{(1 - x + z)^4}\right),$$

where
$$z = \sqrt{1 - 34x + x^2}$$
.

• Well-developed theory of multivariate asymptotics

e.g., Pemantle-Wilson

THM S 2014

The **Apéry numbers** are the diagonal coefficients of

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}.$$

Univariate generating function:

$$\sum_{n\geqslant 0} A(n)x^n = \frac{17 - x - z}{4\sqrt{2}(1 + x + z)^{3/2}} \, {}_{3}F_2\left(\begin{array}{c} \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ 1, 1 \end{array} \middle| -\frac{1024x}{(1 - x + z)^4}\right),$$

where
$$z = \sqrt{1 - 34x + x^2}$$
.

- Well-developed theory of multivariate asymptotics
- e.g., Pemantle-Wilson Furstenberg, Deligne '67, '84

• Such diagonals are algebraic modulo p^r . Automatically leads to congruences such as

$$A(n) \equiv \begin{cases} 1 & (\text{mod } 8), & \text{if } n \text{ even,} \\ 5 & (\text{mod } 8), & \text{if } n \text{ odd.} \end{cases}$$

Chowla-Cowles-Cowles '80 Rowland-Yassawi '13

if p is prime.

$$a^p \equiv a \pmod{p}$$

if p is prime.

$$a^p \equiv a \pmod{p}$$

THM Euler

r if a is coprime to m.

$$a^{\phi(m)} \equiv 1 ~(\operatorname{mod} m)$$

if p is prime.

if a is coprime to m.

$$a^p \equiv a \pmod{p}$$

THM Euler

$$a^q$$

 $a^{\phi(m)} \equiv 1 \pmod{m}$

THM Gauss

$$\sum_{d|m} \mu(\frac{m}{d})a^d \equiv 0 \pmod{m}$$

Möbius function: $\mu(n) = (-1)^{\# \text{ of } p|n}$ if n is square-free, $\mu(n) = 0$ else

if p is prime.

$$a^p \equiv a \pmod{p}$$

THM Euler

 $a^{\phi(m)} \equiv 1 \pmod{m}$ if a is coprime to m.

THM Gauss

$$\sum_{d|m} \mu(\frac{m}{d})a^d \equiv 0 \pmod{m}$$

Möbius function: $\mu(n) = (-1)^{\# \text{ of } p|n}$ if n is square-free, $\mu(n) = 0$ else

If $m=p^r$ then only $d=p^r$, $d=p^{r-1}$ contribute, and we get

$$a^{p^r} \equiv a^{p^{r-1}} \pmod{p^r}.$$

DEF a(n) satisfies the **Gauss congruences** if, for all primes p,

$$a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}.$$

Equivalently,
$$\sum_{d|m} \mu(\frac{m}{d}) a(d) \equiv 0 \pmod{m}$$
.

DEF
$$a(n)$$
 satisfies the **Gauss congruences** if, for all primes p ,

$$a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}.$$

Equivalently,
$$\sum_{d|m} \mu(\frac{m}{d}) a(d) \equiv 0 \pmod{m}$$
.

$$\bullet \ a(n) = a^n$$

DEF
$$a(n)$$
 satisfies the **Gauss congruences** if, for all primes p ,

$$a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}.$$

Equivalently,
$$\sum_{d|m} \mu(\frac{m}{d}) a(d) \equiv 0 \pmod{m}$$
.

- $\bullet \ a(n) = a^n$
 - $a(n)=L_n$ Lucas numbers: $L_{n+1}=L_n+L_{n-1}$ $L_0=2, L_1=1$

DEF
$$a(n)$$
 satisfies the **Gauss congruences** if, for all primes p ,

$$a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}.$$

Equivalently,
$$\sum_{d|m} \mu(\frac{m}{d})a(d) \equiv 0 \pmod{m}$$
.

- $\bullet \ a(n) = a^n$
 - $a(n)=L_n$ Lucas numbers: $L_{n+1}=L_n+L_{n-1}$ $L_0=2,L_1=1$
- $a(n) = D_n$ Delannoy numbers: $D_n = \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k}$

DEF
$$a(n)$$
 satisfies the **Gauss congruences** if, for all primes p ,

$$a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}.$$

Equivalently,
$$\sum_{d|m} \mu(\frac{m}{d}) a(d) \equiv 0 \pmod{m}$$
.

EG •
$$a(n) = a^n$$

$$\bullet \ \ a(n) = L_n \quad \ \mbox{Lucas numbers:} \quad \begin{array}{ll} L_{n+1} = L_n + L_{n-1} \\ L_0 = 2, L_1 = 1 \end{array}$$

•
$$a(n) = D_n$$
 Delannoy numbers: $D_n = \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k}$

- Later, we allow $a(n) \in \mathbb{Q}$. If the Gauss congruences hold for all but finitely many p, we say that the sequence (or its GF) has the **Gauss property**.
- ullet Similarly, for multivariate sequences $a(oldsymbol{n})$, we require

$$a(\boldsymbol{m}p^r) \equiv a(\boldsymbol{m}p^{r-1}) \pmod{p^r}.$$

More sequences satisfying Gauss congruences

$$a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}$$
 (G)

• realizable sequences a(n), i.e., for some map $T: X \to X$,

$$a(n) = \#\{x \in X : T^n x = x\}$$
 "points of period n"

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05

In fact, up to a positivity condition, (G) characterizes realizability.

Armin Straub Gauss congruences 8 / 13

More sequences satisfying Gauss congruences

$$a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}$$
 (G)

• realizable sequences a(n), i.e., for some map $T: X \to X$,

$$a(n) = \#\{x \in X : T^n x = x\}$$
 "points of period n"

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05

In fact, up to a positivity condition, (G) characterizes realizability.

• $a(n) = \operatorname{trace}(M^n)$ Jänichen '21. Schur '37: also: Arnold. Zarelua where M is an integer matrix

Armin Straub Gauss congruences

More sequences satisfying Gauss congruences

$$a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}$$
 (G)

• realizable sequences a(n), i.e., for some map $T:X\to X$,

$$a(n) = \#\{x \in X : T^n x = x\}$$
 "points of period n"

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05

In fact, up to a positivity condition, (G) characterizes realizability.

- ullet $a(n)={
 m trace}(M^n)$ Jänichen '21, Schur '37; also: Arnold, Zarelua where M is an integer matrix
- (G) is equivalent to $\exp\left(\sum_{n=1}^{\infty}\frac{a(n)}{n}T^n\right)\in\mathbb{Z}[[T]].$ This is a natural condition in formal group theory.

Gauss congruences Armin Straub

THM $f \in \mathbb{Q}(x)$ has the Gauss property if and only if f is a \mathbb{Q} -linear combination of functions xu'(x)/u(x), with $u \in \mathbb{Z}[x]$.

Gauss congruences Armin Straub

THM $f \in \mathbb{Q}(x)$ has the Gauss property if and only if f is a \mathbb{Q} -linear combination of functions xu'(x)/u(x), with $u \in \mathbb{Z}[x]$.

• If $u(x) = \prod_{i=1}^{s} (1 - \alpha_i x)$ then

$$x\frac{u'(x)}{u(x)} = -\sum_{i=1}^{s} \frac{\alpha_i x}{1 - \alpha_i x} = s - \sum_{i=1}^{s} \frac{1}{1 - \alpha_i x}.$$

Minton. 2014

THM $f \in \mathbb{Q}(x)$ has the Gauss property if and only if f is a \mathbb{Q} -linear combination of functions xu'(x)/u(x), with $u \in \mathbb{Z}[x]$.

• If $u(x) = \prod_{i=1}^{s} (1 - \alpha_i x)$ then

$$x \frac{u'(x)}{u(x)} = -\sum_{i=1}^{s} \frac{\alpha_i x}{1 - \alpha_i x} = s - \sum_{i=1}^{s} \frac{1}{1 - \alpha_i x}.$$

• Assuming the α_i are distinct,

$$\sum_{i=1}^{s} \frac{1}{1 - \alpha_i x} = \sum_{n \geqslant 0} \left(\sum_{i=1}^{s} \alpha_i^n \right) x^n = \sum_{n \geqslant 0} \operatorname{trace}(M^n) x^n,$$

where M is the companion matrix of $\prod_{i=1}^{s} (x - \alpha_i) = x^s u(1/x)$.

Minton. 2014

THM $f \in \mathbb{Q}(x)$ has the Gauss property if and only if f is a \mathbb{Q} -linear combination of functions xu'(x)/u(x), with $u \in \mathbb{Z}[x]$.

• If $u(x) = \prod_{i=1}^{s} (1 - \alpha_i x)$ then

$$x \frac{u'(x)}{u(x)} = -\sum_{i=1}^{s} \frac{\alpha_i x}{1 - \alpha_i x} = s - \sum_{i=1}^{s} \frac{1}{1 - \alpha_i x}.$$

• Assuming the α_i are distinct,

$$\sum_{i=1}^{s} \frac{1}{1 - \alpha_i x} = \sum_{n \geqslant 0} \left(\sum_{i=1}^{s} \alpha_i^n \right) x^n = \sum_{n \geqslant 0} \operatorname{trace}(M^n) x^n,$$

where M is the companion matrix of $\prod_{i=1}^{s} (x - \alpha_i) = x^s u(1/x)$.

- Minton: No new C-finite sequences with the Gauss property!
- Can we generalize from C-finite towards D-finite?

THM Beukers, Houben, S 2017

THM Let $f_1,\ldots,f_m\in\mathbb{Q}(x)=\mathbb{Q}(x_1,\ldots,x_n)$ be nonzero. Then

$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i} \right)_{i,j=1,\dots,m} \tag{D}$$

has the Gauss property.

Interesting detail: true for any of the different Laurent expansions of multivariate rational functions

THM Beukers, Houben, S 2017

THM Let $f_1,\ldots,f_m\in\mathbb{Q}(x)=\mathbb{Q}(x_1,\ldots,x_n)$ be nonzero. Then

$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i} \right)_{i,j=1,\dots,m} \tag{D}$$

has the Gauss property.

Interesting detail: true for any of the different Laurent expansions of multivariate rational functions

EG Consider Q = 1 - x - y - z + 4xyz:

$$f_1 = Q \implies (\mathsf{D}) = \frac{-x + 4xyz}{Q}$$

THM Beukers, Houben, S 2017

THM Let $f_1,\ldots,f_m\in\mathbb{Q}(x)=\mathbb{Q}(x_1,\ldots,x_n)$ be nonzero. Then

$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i} \right)_{i, i=1, \dots, m} \tag{D}$$

has the Gauss property.

Interesting detail: true for any of the different Laurent expansions of multivariate rational functions

EG Consider Q = 1 - x - y - z + 4xyz:

$$f_1 = Q \implies (D) = \frac{-x + 4xyz}{Q}$$

$$f_1 = Q, \quad f_2 = 1 - 4yz \implies (D) = \frac{4xyz}{Q}$$

Beukers, Houben, S 2017

THM Let $f_1,\ldots,f_m\in\mathbb{Q}(x)=\mathbb{Q}(x_1,\ldots,x_n)$ be nonzero. Then

$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i} \right)_{i, j=1, \dots, m} \tag{D}$$

has the Gauss property.

Interesting detail: true for any of the different Laurent expansions of multivariate rational functions

EG

Consider Q = 1 - x - y - z + 4xyz:

$$f_1 = Q \implies (D) = \frac{-x + 4xyz}{Q}$$

$$f_1 = Q, \quad f_2 = 1 - 4yz \implies (D) = \frac{4xyz}{Q}$$

In particular, $\frac{1}{1-x-y-z+4xyz}$ has the Gauss property.

There is nothing special about 4 in this argument.

THM Beukers, Houben, S 2017

Let $f_1,\ldots,f_m\in\mathbb{Q}(\boldsymbol{x})=\mathbb{Q}(x_1,\ldots,x_n)$ be nonzero. Then

$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i} \right)_{i,j=1,\dots,m} \tag{D}$$

has the Gauss property.

THM BHS

Let $P,Q \in \mathbb{Z}[x]$ with Q is linear in each variable.

Then P/Q has the Gauss property if and only if $N(P)\subseteq N(Q)$.

- Here, N(Q) is the Newton polytope of Q.
- In this case, $N(Q) = \operatorname{supp}(Q) \subseteq \{0, 1\}^n$.

Beukers. Houben. S 2017

THM Let $f_1, \ldots, f_m \in \mathbb{Q}(x) = \mathbb{Q}(x_1, \ldots, x_n)$ be nonzero. Then

$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i} \right)_{i,j=1,\dots,m} \tag{D}$$

has the Gauss property.

THM BHS

Let $P,Q \in \mathbb{Z}[x]$ with Q is linear in each variable.

Then P/Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

- Here, N(Q) is the Newton polytope of Q.
- In this case, $N(Q) = \operatorname{supp}(Q) \subset \{0, 1\}^n$.

 $\begin{array}{l} \textbf{PROP} \\ \textbf{BHS} \end{array} \text{ Let } P,Q \in \mathbb{Z}[\boldsymbol{x}^{\pm 1}].$

If P/Q has the Gauss property, then $N(P) \subseteq N(Q)$.

THM Beukers, Houben, S 2017

THM Let $f_1,\ldots,f_m\in\mathbb{Q}(\boldsymbol{x})=\mathbb{Q}(x_1,\ldots,x_n)$ be nonzero. Then

$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i} \right)_{i,j=1,\dots,m} \tag{D}$$

has the Gauss property.

Q BHS Suppose $f \in \mathbb{Q}(x)$ has the Gauss property. Can it be written as a \mathbb{Q} -linear combination of functions of the form (D)?

• Yes, for n = 1, by Minton's theorem.

THM Beukers, Houben, S 2017

Let $f_1,\ldots,f_m\in\mathbb{Q}(oldsymbol{x})=\mathbb{Q}(x_1,\ldots,x_n)$ be nonzero. Then

$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i} \right)_{i,j=1,\dots,m}$$
 (D)

has the Gauss property.

Q BHS Suppose $f \in \mathbb{Q}(x)$ has the Gauss property. Can it be written as a \mathbb{Q} -linear combination of functions of the form (D)?

- Yes, for n = 1, by Minton's theorem.
- Yes, for f = P/Q with Q linear in all, or all but one, variables.

The multivariate case

THM Beukers, Houben, S 2017

Let $f_1,\ldots,f_m\in\mathbb{Q}(oldsymbol{x})=\mathbb{Q}(x_1,\ldots,x_n)$ be nonzero. Then

$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i} \right)_{i,j=1,\dots,m} \tag{D}$$

has the Gauss property.

Q BHS Suppose $f \in \mathbb{Q}(x)$ has the Gauss property. Can it be written as a \mathbb{Q} -linear combination of functions of the form (D)?

- Yes, for n = 1, by Minton's theorem.
- Yes, for f = P/Q with Q linear in all, or all but one, variables.
- Yes, for f = P/Q with Q in two variables and total degree 2.

The multivariate case

THM Beukers, Houben, S 2017

Let $f_1,\ldots,f_m\in\mathbb{Q}(\boldsymbol{x})=\mathbb{Q}(x_1,\ldots,x_n)$ be nonzero. Then

$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i} \right)_{i, i=1, \dots, m} \tag{D}$$

has the Gauss property.

Q BHS Suppose $f \in \mathbb{Q}(x)$ has the Gauss property. Can it be written as a \mathbb{Q} -linear combination of functions of the form (D)?

- Yes, for n = 1, by Minton's theorem.
- Yes, for f=P/Q with Q linear in all, or all but one, variables.
- Yes, for f = P/Q with Q in two variables and total degree 2.

Can
$$\frac{x(x+y+y^2+2xy^2)}{1+3x+3y+2x^2+2y^2+xy-2x^2y^2}$$
 be written in that form?

Т	ŀ	1	N	V
- 1	3	Н	S	

Let $P,Q \in \mathbb{Z}[x]$ with Q is linear in each variable.

Then P/Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

BHS

THM Let $P, Q \in \mathbb{Z}[x]$ with Q is linear in each variable.

Then P/Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

EG Beukers. Houben. S 2017

The **Delannoy numbers** D_{n_1,n_2} are characterized by

$$\frac{1}{1-x-y-xy} = \sum_{n_1, n_2=0}^{\infty} D_{n_1, n_2} x^{n_1} y^{n_2}.$$

BHS

THM Let $P, Q \in \mathbb{Z}[x]$ with Q is linear in each variable.

Then P/Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

EG Beukers. Houben. S 2017

The **Delannoy numbers** D_{n_1,n_2} are characterized by

$$\frac{1}{1-x-y-xy} = \sum_{n_1,n_2=0}^{\infty} D_{n_1,n_2} x^{n_1} y^{n_2}.$$

By the theorem, the following have the Gauss property:

$$\frac{N}{1-x-y-xy} \quad \text{with } N \in \{1,x,y,xy\}$$

BHS

THM Let $P, Q \in \mathbb{Z}[x]$ with Q is linear in each variable.

Then P/Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

EG Beukers. Houben. S 2017

The **Delannoy numbers** D_{n_1,n_2} are characterized by

$$\frac{1}{1-x-y-xy} = \sum_{n_1,n_2=0}^{\infty} D_{n_1,n_2} x^{n_1} y^{n_2}.$$

By the theorem, the following have the Gauss property:

$$\frac{N}{1-x-y-xy} \quad \text{with } N \in \{1, x, y, xy\}$$

In other words, for $\delta \in \{0,1\}^2$,

$$D_{\boldsymbol{m}p^r-\boldsymbol{\delta}} \equiv D_{\boldsymbol{m}p^{r-1}-\boldsymbol{\delta}} \pmod{p^r}.$$

Some open problems

Which rational functions have the Gauss property?

$$A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \pmod{p^r}$$

When are these necessarily combinations of $\frac{x_1\cdots x_m}{f_1\cdots f_m}\det\left(\frac{\partial f_j}{\partial x_i}\right)$?

Which rational functions satisfy supercongruences?

$$A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \pmod{p^{kr}}, \quad k > 1$$

And can we prove these?

$$\frac{1}{1 - (x + y + z) + 4xyz}, \quad \frac{1}{1 - (x + y + z + w) + 27xyzw}$$

• Is there a rational function in three variables with the $\zeta(3)$ -Apéry numbers as diagonal?

THANK YOU!

Slides for this talk will be available from my website: http://arminstraub.com/talks

F. Beukers, M. Houben, A. Straub Gauss congruences for rational functions in several variables Preprint, 2017, arXiv:1710.00423

A. Straub Multivariate Apéry numbers and supercongruences of rational functions

Algebra & Number Theory, Vol. 8, Nr. 8, 2014, p. 1985-2008

Gauss congruences

a 13 / 13

Bonus

Apéry-like sequences

Gauss congruences Armin Straub

Apéry numbers and the irrationality of $\zeta(3)$

 The Apéry numbers $A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$

$$1, 5, 73, 1445, \dots$$

satisfy

$$(n+1)^3 A(n+1) = (2n+1)(17n^2 + 17n + 5)A(n) - n^3 A(n-1).$$

Apéry numbers and the irrationality of $\zeta(3)$

• The Apéry numbers

 $1, 5, 73, 1445, \dots$

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2$$

satisfy

$$(n+1)^3 A(n+1) = (2n+1)(17n^2 + 17n + 5)A(n) - n^3 A(n-1).$$

THM Apéry '78 $\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$ is irrational.

proof The same recurrence is satisfied by the "near"-integers

$$B(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 \left(\sum_{j=1}^{n} \frac{1}{j^3} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^3 {n \choose m} {n+m \choose m}} \right).$$

Then, $\frac{B(n)}{A(n)} \to \zeta(3)$. But too fast for $\zeta(3)$ to be rational.

Zagier's search and Apéry-like numbers

• Recurrence for Apéry numbers is the case (a,b,c)=(17,5,1) of

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - cn^3 u_{n-1}.$$

Q Beukers, Zagier Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral?

Zagier's search and Apéry-like numbers

• Recurrence for Apéry numbers is the case (a, b, c) = (17, 5, 1) of

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - cn^3 u_{n-1}.$$

Beukers, Zagier

Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral?

• Essentially, only 14 tuples (a, b, c) found.

(Almkvist-Zudilin)

• 4 hypergeometric and 4 Legendrian solutions (with generating functions

$$_3F_2\left(egin{array}{c} \frac{1}{2}, lpha, 1-lpha \\ 1, 1 \end{array} \middle| 4C_lpha z
ight), \qquad rac{1}{1-C_lpha z} _2F_1\left(egin{array}{c} lpha, 1-lpha \\ 1 \end{array} \middle| rac{-C_lpha z}{1-C_lpha z}
ight)^2,$$

with $\alpha = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}$ and $C_{\alpha} = 2^4, 3^3, 2^6, 2^4 \cdot 3^3$)

- 6 sporadic solutions
- Similar (and intertwined) story for:

• $(n+1)^2u_{n+1} = (an^2 + an + b)u_n - cn^2u_{n-1}$ (Beukers, Zagier)

• $(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - n(cn^2 + d)u_{n-1}$ (Cooper)

The six sporadic Apéry-like numbers

(a,b,c)	A(n)
(17, 5, 1)	$\sum_{k} \binom{n}{k}^2 \binom{n+k}{n}^2$
(12, 4, 16)	$\sum_{k} \binom{n}{k}^2 \binom{2k}{n}^2$
(10, 4, 64)	$\sum_{k} \binom{n}{k}^{2} \binom{2k}{k} \binom{2(n-k)}{n-k}$
(7, 3, 81)	$\sum_{k} (-1)^{k} 3^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^{3}}$
(11, 5, 125)	$\sum_{k} (-1)^k \binom{n}{k}^3 \binom{4n-5k}{3n}$
(9, 3, -27)	$\sum_{k,l} \binom{n}{k}^2 \binom{n}{l} \binom{k}{l} \binom{k+l}{n}$

Apéry numbers

Domb numbers

Almkvist-Zudilin numbers

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p\geqslant 5$, $A(p)\equiv 5\pmod{p^3}.$

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \geqslant 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p\geqslant 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

THM The Apéry numbers satisfy the supercongruence

 $(p \geqslant 5)$

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$$

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p\geqslant 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

THM Beukers, Coster '85, '88

THM The Apéry numbers satisfy the supercongruence

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$$

EG For primes p, simple combinatorics proves the congruence

$$\binom{2p}{p} = \sum_k \binom{p}{k} \binom{p}{p-k} \equiv 1+1 \pmod{p^2}.$$

For $p\geqslant 5$, Wolstenholme's congruence shows that, in fact,

$$\binom{2p}{p} \equiv 2 \pmod{p^3}.$$

 $(p \geqslant 5)$

Conjecturally, supercongruences like

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}$$

hold for all Apéry-like numbers.

(NISER, India)
Osburn–Sahu '09

• Current state of affairs for the six sporadic sequences from earlier:

(a,b,c)	A(n)	
(17, 5, 1)	$\sum_{k} {n \choose k}^2 {n+k \choose n}^2$	Beukers, Coster '87-'88
(12, 4, 16)	$\sum_{k} {n \choose k}^2 {2k \choose n}^2$	Osburn-Sahu-S '16
(10, 4, 64)	$\sum_{k} {n \choose k}^2 {2k \choose k} {2(n-k) \choose n-k}$	Osburn–Sahu '11
(7, 3, 81)	$\sum_{k} (-1)^{k} 3^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^{3}}$	open $rac{modulo\;p^3}{Amdeberhan-Tauraso\;$ 16
(11, 5, 125)	$\sum_{k} (-1)^{k} {n \choose k}^{3} {4n-5k \choose 3n}$	Osburn–Sahu–S '16
(9, 3, -27)	$\sum_{k,l} \binom{n}{k}^2 \binom{n}{l} \binom{k}{l} \binom{k+l}{n}$	Gorodetsky '18

S 2014

Define $A(n) = A(n_1, n_2, n_3, n_4)$ by

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}=\sum_{\boldsymbol{n}\in\mathbb{Z}_{\geq 0}^4}A(\boldsymbol{n})\boldsymbol{x}^{\boldsymbol{n}}.$$

- The Apéry numbers are the diagonal coefficients.
- For $p \ge 5$, we have the multivariate supercongruences

$$A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \pmod{p^{3r}}.$$

THM S 2014 Define $A(\boldsymbol{n}) = A(n_1, n_2, n_3, n_4)$ by

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}=\sum_{\boldsymbol{n}\in\mathbb{Z}_{>0}^4}A(\boldsymbol{n})\boldsymbol{x}^{\boldsymbol{n}}.$$

- The Apéry numbers are the diagonal coefficients.
- ullet For $p\geqslant 5$, we have the multivariate supercongruences

$$A(\mathbf{n}p^r) \equiv A(\mathbf{n}p^{r-1}) \pmod{p^{3r}}.$$

•
$$\sum_{n\geqslant 0} a(n)x^n = F(x)$$
 \Longrightarrow $\sum_{n\geqslant 0} a(pn)x^{pn} = \frac{1}{p}\sum_{k=0}^{p-1} F(\zeta_p^k x)$ $\zeta_p = e^{2\pi i/p}$

• Hence, both $A(\boldsymbol{n}p^r)$ and $A(\boldsymbol{n}p^{r-1})$ have rational generating function. The proof, however, relies on an explicit binomial sum for the coefficients.

Gauss congruences Armin Straub

S 2014

Define $A(n) = A(n_1, n_2, n_3, n_4)$ by

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}=\sum_{\boldsymbol{n}\in\mathbb{Z}_{\geq 0}^4}A(\boldsymbol{n})\boldsymbol{x}^{\boldsymbol{n}}.$$

- The Apéry numbers are the diagonal coefficients.
- For $p \geqslant 5$, we have the multivariate supercongruences

$$A(\mathbf{n}p^r) \equiv A(\mathbf{n}p^{r-1}) \pmod{p^{3r}}.$$

By MacMahon's Master Theorem,

$$A(\mathbf{n}) = \sum_{k \in \mathbb{Z}} \binom{n_1}{k} \binom{n_3}{k} \binom{n_1 + n_2 - k}{n_1} \binom{n_3 + n_4 - k}{n_3}.$$

Armin Straub Gauss congruences

THM Define
$$A(n)$$
 =

Define $A(n) = A(n_1, n_2, n_3, n_4)$ by

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}=\sum_{\boldsymbol{n}\in\mathbb{Z}_{>0}^4}A(\boldsymbol{n})\boldsymbol{x}^{\boldsymbol{n}}.$$

- The Apéry numbers are the diagonal coefficients.
- For $p \ge 5$, we have the multivariate supercongruences

$$A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \pmod{p^{3r}}.$$

By MacMahon's Master Theorem,

$$A(\mathbf{n}) = \sum_{k \in \mathbb{Z}} \binom{n_1}{k} \binom{n_3}{k} \binom{n_1 + n_2 - k}{n_1} \binom{n_3 + n_4 - k}{n_3}.$$

Because A(n-1) = A(-n, -n, -n, -n), we also find

$$A(mp^r - 1) \equiv A(mp^{r-1} - 1) \pmod{p^{3r}}.$$

Beukers '85

Gauss congruences

An infinite family of rational functions

THM s 2014 Let $\lambda \in \mathbb{Z}^{\ell}_{>0}$ with $d = \lambda_1 + \ldots + \lambda_{\ell}$. Define $A_{\lambda}(n)$ by

$$\frac{1}{\prod\limits_{1\leqslant j\leqslant \ell}\left[1-\sum\limits_{1\leqslant r\leqslant \lambda_j}x_{\lambda_1+\ldots+\lambda_{j-1}+r}\right]-x_1x_2\cdots x_d}=\sum_{\boldsymbol{n}\in\mathbb{Z}_{\geqslant 0}^d}A_{\lambda}(\boldsymbol{n})\boldsymbol{x}^{\boldsymbol{n}}.$$

• If $\ell \geqslant 2$, then, for all primes p,

$$A_{\lambda}(\boldsymbol{n}p^r) \equiv A_{\lambda}(\boldsymbol{n}p^{r-1}) \pmod{p^{2r}}.$$

• If $\ell \geqslant 2$ and $\max(\lambda_1, \ldots, \lambda_\ell) \leqslant 2$, then, for primes $p \geqslant 5$,

$$A_{\lambda}(\boldsymbol{n}p^r) \equiv A_{\lambda}(\boldsymbol{n}p^{r-1}) \pmod{p^{3r}}.$$

$$\lambda = (2,2)$$

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}$$

$$\frac{1}{(1-x_1-x_2)(1-x_3)-x_1x_2x_3}$$

Further examples

EG

$$\frac{1}{(1-x_1-x_2)(1-x_3)-x_1x_2x_3}$$

has as diagonal the Apéry-like numbers, associated with $\zeta(2)$,

$$B(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}.$$

EG

$$\overline{(1-x_1)(1-x_2)\cdots(1-x_d)-x_1x_2\cdots x_d}$$

has as diagonal the numbers

d=3: Franel, d=4: Yang-Zudilin

$$Y_d(n) = \sum_{k=0}^{n} \binom{n}{k}^d.$$

 In each case, we obtain supercongruences generalizing results of Coster (1988) and Chan-Cooper-Sica (2010).

A conjectural multivariate supercongruence

CONJ The coefficients
$$Z(n)$$
 of

$$\frac{1}{1 - (x_1 + x_2 + x_3 + x_4) + 27x_1x_2x_3x_4} = \sum_{\boldsymbol{n} \in \mathbb{Z}_{\geq 0}^4} Z(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}}$$

satisfy, for $p\geqslant 5$, the multivariate supercongruences

$$Z(\boldsymbol{n}p^r) \equiv Z(\boldsymbol{n}p^{r-1}) \pmod{p^{3r}}.$$

Here, the diagonal coefficients are the Almkvist–Zudilin numbers

$$Z(n) = \sum_{k=0}^{n} (-3)^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^3},$$

for which the univariate congruences are still open.

Gauss congruences Armin Straub 23 / 24

THANK YOU!

Slides for this talk will be available from my website: http://arminstraub.com/talks

F. Beukers, M. Houben, A. Straub Gauss congruences for rational functions in several variables Preprint, 2017, arXiv:1710.00423

A. Straub
Multivariate Apéry numbers and supercongruences of rational functions

Algebra & Number Theory, Vol. 8, Nr. 8, 2014, p. 1985-2008