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A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

f(τ) = η(2τ)4η(4τ)4 =
∑
n>1

αnq
n

1, 5, 73, 1445, 33001, 819005, 21460825, . . .

A(p−1
2 ) ≡ αp (mod p2)

A(−1
2) = 16

π2L(f, 2)
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Apéry numbers and the irrationality of ζ(3)

• The Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

satisfy

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.

ζ(3) =
∑
n>1

1

n3
is irrational.

THM
Apéry ’78
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• The Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

satisfy

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.
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n>1
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n3
is irrational.

THM
Apéry ’78

The same recurrence is satisfied by the “near”-integers

B(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2
 n∑
j=1

1

j3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
 .

Then, B(n)
A(n) → ζ(3). But too fast for ζ(3) to be rational.

proof
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Zagier’s search and Apéry-like numbers

• The Apéry numbers B(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)
for ζ(2) satisfy

(n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1, (a, b, c) = (11, 3,−1).

Are there other tuples (a, b, c) for which the solution defined by
u−1 = 0, u0 = 1 is integral?

Q
Beukers

• Apart from degenerate cases, Zagier found 6 sporadic integer solutions:

* C∗(n)

A
n∑
k=0

(
n

k

)3

B
bn/3c∑
k=0

(−1)k3n−3k

(
n

3k

)
(3k)!

k!3

C
n∑
k=0

(
n

k

)2(2k

k

)

* C∗(n)

D
n∑
k=0

(
n

k

)2(n+ k

n

)

E
n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)

F
n∑
k=0

(−1)k8n−k
(
n

k

)
CA(k)
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Modularity of Apéry-like numbers

• The Apéry numbers 1, 5, 73, 1145, . . .

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

satisfy

η7(2τ)η7(3τ)

η5(τ)η5(6τ)

1 + 5q + 13q2 + 23q3 + O(q4)

modular form

=
∑
n>0

A(n)

(
η12(τ)η12(6τ)

η12(2τ)η12(3τ)

)n
q − 12q2 + 66q3 + O(q4)

modular function

.

Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

FACT
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modular form

=
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n>0

A(n)

(
η12(τ)η12(6τ)

η12(2τ)η12(3τ)

)n
q − 12q2 + 66q3 + O(q4)

modular function

.

Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

FACT

• Context: f(τ) modular form of weight k
x(τ) modular function
y(x) such that y(x(τ)) = f(τ)

Then y(x) satisfies a linear differential equation of order k + 1.
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L-value interpolations

For primes p > 2, the Apéry numbers for ζ(3) satisfy

A(p−1
2 ) ≡ af (p) (mod p2),

with f(τ) = η(2τ)4η(4τ)4 =
∑
n>1

af (n)qn ∈ S4(Γ0(8)).

THM
Ahlgren–

Ono
2000

conjectured (and proved modulo p) by Beukers ’87

A(−1
2) = 16

π2L(f, 2)
THM
Zagier
2016

• Here, A(x) =
∞∑
k=0

(
x

k

)2(
x+ k

k

)2

is absolutely convergent for x ∈ C.

• Predicted by Golyshev based on motivic considerations,
the connection of the Apéry numbers with the double covering
of a family of K3 surfaces, and the Tate conjecture.

D. Zagier
Arithmetic and topology of differential equations
Proceedings of the 2016 ECM, 2017
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L-value interpolations, cont’d

• Zagier found 6 sporadic integer solutions C∗(n) to: ∗ one of A-F

(n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1 u−1 = 0, u0 = 1

There exists a weight 3 newform f∗(τ) =
∑
n>1 γn,∗q

n, so that

C∗(
p−1
2 ) ≡ γp,∗ (mod p).

THM
1985

-
2019

• C, D proved by Beukers–Stienstra (’85); A follows from their work
• E proved using a result Verrill (’10); B through p-adic analysis
• F conjectured by Osburn–S and proved by Kazalicki (’19) using

Atkin–Swinnerton-Dyer congruences for non-congruence cusp forms

For ∗ one of A-F , except E, there is α∗ ∈ Z such that

C∗(− 1
2 ) =

α∗
π2
L(f∗, 2).

For sequence E, res
x=−1/2

CE(x) =
6

π2
L(fE , 1).

THM
Osburn
S ’18
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L-value interpolations, cont’d

* C∗(n) f∗(τ) N∗ CM α∗

A
n∑
k=0

(
n

k

)3 η(4τ)5η(8τ)5

η(2τ)2η(16τ)2
32 Q(

√
−2) 8

B
bn/3c∑
k=0

(−1)k3n−3k

(
n

3k

)
(3k)!

k!3
η(4τ)6 16 Q(

√
−1) 8

C
n∑
k=0

(
n

k

)2(2k

k

)
η(2τ)3η(6τ)3 12 Q(

√
−3) 12

D
n∑
k=0

(
n

k

)2(n+ k

n

)
η(4τ)6 16 Q(

√
−1) 16

E
n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)
η(τ)2η(2τ)η(4τ)η(8τ)2 8 Q(

√
−2) 6

F
n∑
k=0

(−1)k8n−k
(
n

k

)
CA(k) q − 2q2 + 3q3 + . . . 24 Q(

√
−6) 6

C∗(−1
2) =

α∗
π2
L(f∗, 2)
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Interpolating sequences

What is the proper way of defining C(−1
2)?Q

a(n) = n! is interpolated by a(x) = Γ(x+ 1) =

∫ ∞
0

txe−t dt.
EG

∫ ∞
0

(
a(0)− a(1)x2 + a(2)x4 − . . .

)
dx =

π

2
a(−1

2)
THM
Glaisher

1874

∫ ∞
0

1

1 + x2S
· a(0) dx =

π

2
S−1/2 · a(0)

“poof”

(Glaisher’s formal proof, simplified by O’Kinealy)

Here, S is the shift operator: S · b(n) = b(n+ 1)
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Interpolating sequences: Ramanujan’s master theorem

∫ ∞
0

xs−1
(
a(0)− xa(1) + x2a(2)− . . .

)
dx =

π

sin sπ
a(−s)

for 0 < Re s < δ, provided that

• a is analytic on H(δ) = {z ∈ C : Re u > −δ},
• |a(x+ iy)| < Ceα|x|+β|y| for some β < π.

THM
Ramanujan

Hardy

Suppose a satisfies the conditions for RMT. If

a(0) = 0, a(1) = 0, a(2) = 0, . . . ,

then a(z) = 0 identically.

COR
Carlson

1914

• However, we will see that our interpolations do not arise in this way.
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Interpolating sequences

What is the proper way of defining C(−1
2)?Q

• For Apéry numbers A(n), Zagier used A(x) =
∞∑
k=0

(
x

k

)2(
x+ k

k

)2

.
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Interpolating sequences

What is the proper way of defining C(−1
2)?Q

• For Apéry numbers A(n), Zagier used A(x) =
∞∑
k=0

(
x

k

)2(
x+ k

k

)2

.

(x+ 2)3A(x+ 2)− (2x+ 3)(17x2 + 51x+ 39)A(x+ 1)

+ (x+ 1)3A(x) = 0 for all x ∈ Z>0

In particular, A(x) does not satisfy the (vertical) growth conditions of RMT.

EG
Zagier
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+ (x+ 1)3A(x) =
8

π2
(2x+ 3) sin2(πx)

In particular, A(x) does not satisfy the (vertical) growth conditions of RMT.

EG
Zagier

• For the ζ(2) Apéry numbers B(n), we use B(x) =

∞∑
k=0

(
x

k

)2(
x+ k

k

)
.

However:
• The series diverges if Re x < −1.
• Q(x, Sx)B(x) = 0 where Q(x, Sx) is Apéry’s recurrence operator.
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Interpolating sequences

What is the proper way of defining C(−1
2)?Q

• For Apéry numbers A(n), Zagier used A(x) =
∞∑
k=0

(
x

k

)2(
x+ k

k

)2

.

CC(n) =

n∑
k=0

(
n

k

)2(
2k

k

)diverges for n 6∈ Z>0

= 3F2

(
−n,−n, 12

1, 1

∣∣∣∣4)

We use the interpolation CC(x) = Re 3F2

(
−x,−x, 12

1, 1

∣∣∣∣4).

EG
(C)

CE(n) =

n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)

=

(
2n

n

)
3F2

(
−n,−n, 12
1
2 − n, 1

∣∣∣∣∣−1

)

This has a simple pole at n = − 1
2 .

EG
(E)

Interpolated sequences and critical L-values of modular forms Armin Straub
10 / 12



Interpolating sequences

What is the proper way of defining C(−1
2)?Q
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1, 1

∣∣∣∣4)

We use the interpolation CC(x) = Re 3F2

(
−x,−x, 12

1, 1

∣∣∣∣4).

EG
(C)

CE(n) =
n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)

=

(
2n

n

)
3F2

(
−n,−n, 12
1
2 − n, 1

∣∣∣∣∣−1

)

This has a simple pole at n = − 1
2 .

EG
(E)

Interpolated sequences and critical L-values of modular forms Armin Straub
10 / 12



Interpolating sequences

What is the proper way of defining C(−1
2)?Q
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• For Apéry numbers A(n), Zagier used A(x) =
∞∑
k=0

(
x

k

)2(
x+ k

k

)2

.

C(n) =
n∑

k1,k2,k3,k4=0
k1+k2=k3+k4

4∏
i=1

(
n

ki

)(
n+ ki
ki

)
.

How to compute C(−1
2)?

EG

• RE: order 4, degree 15
• DE: order 7, degree 17

(2 analytic solutions)

For any odd prime p,

C(p−12 ) ≡ γ(p) (mod p2), η12(2τ) =
∑
n>1

γ(n)qn ∈ S6(Γ0(4))

THM
McCarthy,

Osburn,
S 2018

Is there a Zagier-type interpolation?Q
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Conclusions

• Golyshev and Zagier observed that for

A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

, f(τ) = η(2τ)4η(4τ)4 =
∑
n>1

αnq
n

the known modular congruences have a continuous analog: weight 4

A(p−12 ) ≡ αp (mod p2), A(− 1
2 ) = 16

π2L(f, 2)

• We proved that the same phenomenon holds for:
• all six sporadic sequences of Zagier weight 3

• an infinite family of leading coefficients of Brown’s cellular integrals
odd weight k
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2 ) = 16

π2L(f, 2)

• We proved that the same phenomenon holds for:
• all six sporadic sequences of Zagier weight 3

• an infinite family of leading coefficients of Brown’s cellular integrals
odd weight k

• Proofs are computational and not satisfactorily uniform
Do all of these have the same motivic explanation?

Can Zagier’s motivic approach (relying on Tate conjecture) be worked out explicitly in these cases?

• Further examples exist. What is the natural framework?
Apéry-like sequences, CM modular forms, hypergeometric series, . . .

• How to characterize the analytic interpolations abstractly?
We used suitable binomial sums. But the interpolations are not unique! (Some grow like sin(πx) as x→ i∞.)

• Polynomial analogs?
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

D. McCarthy, R. Osburn, A. Straub
Sequences, modular forms and cellular integrals
Mathematical Proceedings of the Cambridge Philosophical Society, 2018

R. Osburn, A. Straub
Interpolated sequences and critical L-values of modular forms
Chapter 14 of the book: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory
Editors: J. Blümlein, P. Paule and C. Schneider; Springer, 2019, p. 327-349

R. Osburn, A. Straub, W. Zudilin
A modular supercongruence for 6F5: An Apéry-like story
Annales de l’Institut Fourier, Vol. 68, Nr. 5, 2018, p. 1987-2004

D. Zagier
Arithmetic and topology of differential equations
Proceedings of the 2016 ECM, 2017
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Beukers’ proof of the irrationality of ζ(3)

In = (−1)n
∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)n

(1− xy)n+1
dxdy

Jn =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)nwn(1− w)n

(1− (1− xy)w)n+1
dxdydw

• Beukers showed that

In = a(n)ζ(2) + ã(n), Jn = b(n)ζ(3) + b̃(n)

where ã(n), b̃(n) ∈ Q and

a(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)
, b(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

.

• Brown realizes these as period integrals, for N = 5, 6, on the moduli
space M0,N of curves of genus 0 with N marked points.
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Brown’s cellular integrals

Period integrals on M0,N are Q-linear combinations of multiple
zeta values (MZVs). (conjectured by Goncharov–Manin, 2004)

THM
Brown
2009

• Examples of such integrals can be written as: (ai, bj , cij ∈ Z)∫
0<t1<...<tN−3<1

∏
taii (1− tj)bj (ti − tj)cijdt1 . . . dtN−3

• Typically involve MZVs of all weights 6 N − 3.

• Brown constructs families of integrals Iσ(n), for which MZVs of
submaximal weight vanish.
Here, σ are certain (“convergent”) permutations in SN .

N 5 6 7 8 9 10 11

# of σ 1 1 5 17 105 771 7028
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One of Brown’s cellular integrals

• One of the 17 permutations for N = 8 is σ = (8, 3, 6, 1, 4, 7, 2, 5).

• Cellular integral Iσ(n) =
∫

∆ f
n
σ ωσ where ∆ : 0 < t2 < . . . < t6 < 1

fσ =
(−t2)(t2 − t3)(t3 − t4)(t4 − t5)(t5 − t6)(t6 − 1)

(t3 − t6)(t6)(−t4)(t4 − 1)(1− t2)(t2 − t5)
, ωσ =

dt2dt3dt4dt5dt6
(t3 − t6)(t6)(−t4)(t4 − 1)(1− t2)(t2 − t5)

.

Iσ(0) = 16ζ(5)− 8ζ(3)ζ(2)

Iσ(1) = 33Iσ(0)− 432ζ(3) + 316ζ(2)− 26

Iσ(2) = 8929Iσ(0)− 117500ζ(3) + 515189
6 ζ(2)− 331063

48

EG
Panzer:

HyperInt

• OGF of Iσ(n) satisfies a Picard–Fuchs DE of order 7 (Lairez).
With 2-dimensional space of analytic solutions at 0.

• The leading coefficients of Iσ(n) are:

1, 33, 8929, 4124193, 2435948001, 1657775448033, . . .
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One of Brown’s cellular integrals, cont’d

• One of the 17 permutations for N = 8 is σ = (8, 3, 6, 1, 4, 7, 2, 5).
• Cellular integral Iσ(n) =

∫
∆ f

n
σ ωσ where

• The leading coefficients Aσ(n) of Iσ(n) are:

1, 33, 8929, 4124193, 2435948001, 1657775448033, . . .

Aσ(n) =

n∑
k1,k2,k3,k4=0
k1+k2=k3+k4

4∏
i=1

(
n

ki

)(
n+ ki
ki

)LEM
McCarthy,

Osburn,
S 2018
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Aσ(n) =

n∑
k1,k2,k3,k4=0
k1+k2=k3+k4

4∏
i=1

(
n

ki

)(
n+ ki
ki

)LEM
McCarthy,

Osburn,
S 2018

For each N > 5 and convergent σN , the leading coefficients
AσN (n) satisfy (p > 5)

AσN (mpr) ≡ AσN (mpr−1) (mod p3r).

CONJ
McCarthy,

Osburn,
S 2018

For N = 5, 6 these are the supercongruences proved by Beukers and Coster.
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n

ki
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n+ ki
ki

)LEM
McCarthy,

Osburn,
S 2018

For any odd prime p,

Aσ

(p− 1

2

)
≡ γ(p) (mod p2).

where η12(2τ) =
∑
n>1

γ(n)qn is the unique newform in S6(Γ0(4)).

THM
McCarthy,

Osburn,
S 2018
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The Ahlgren–Ono supercongruences

For any odd prime p, the Apéry numbers for ζ(3) satisfy

A

(
p− 1

2

)
≡ α(p) (mod p2),

with η(2τ)4η(4τ)4 =
∑
n>1

α(n)qn the unique newform in S4(Γ0(8)).

THM
Ahlgren–

Ono
’00

For any prime p > 5, the Apéry numbers for ζ(2) satisfy

B

(
p− 1

2

)
≡ β(p) (mod p2),

with η(4τ)6 =
∑
n>1

β(n)qn the unique newform in S3(Γ0(16), (−4· )).

THM
Ahlgren

’01

• conjectured (and proved modulo p) by Beukers ’87
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Congruences and interpolations for cellular integrals

• For an explicit family σN of convergent configurations,
AσN (n) = CD(n)(N−3)/2.

• For odd k > 3, consider the weight k binary theta series

fk(τ) =
1

4

∑
(n,m)∈Z2

(−1)m(k−1)/2(n− im)k−1qn
2+m2

=:
∑
n>1

γk(n)qn.

Let N > 5 be odd and k = N − 2. Then, for all primes p > 5,

AσN (p−1
2 ) ≡ γk(p) (mod p2).

THM
McCarthy,

OS ’18

Let N > 5 be odd and k = N − 2. Then,

AσN (−1
2) =

αk
πk−1

L(fk, k − 1),

where αk are explicit rational numbers, defined recursively.

THM
OS ’18
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