
Interpolated sequences and critical
L-values of modular forms

Minisymposium on Computer Algebra and Special Functions

OPSFA-15, Hagenberg, Austria

Armin Straub

July 25, 2019

University of South Alabama

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

f(τ) = η(2τ)4η(4τ)4 =
∑
n>1

αnq
n

1, 5, 73, 1445, 33001, 819005, 21460825, . . .

A(p−1
2 ) ≡ αp (mod p2)

A(−1
2) = 16

π2L(f, 2)
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A victory for the French peasant. . . ∗

• The Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

satisfy

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.

ζ(3) =
∑∞

n=1
1
n3 is irrational.THM

Apéry ’78

∗ Someone’s “sour comment” after Henri Cohen’s report on Apéry’s proof at the ’78 ICM in Helsinki.
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1
n3 is irrational.THM

Apéry ’78

The same recurrence is satisfied by the “near”-integers

B(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2
 n∑
j=1

1

j3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
 .

Then, B(n)
A(n) → ζ(3). But too fast for ζ(3) to be rational.

proof

∗ Someone’s “sour comment” after Henri Cohen’s report on Apéry’s proof at the ’78 ICM in Helsinki.
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n=1
1
n3 is irrational.THM

Apéry ’78

“After a few days of fruitless effort the specific problem was
mentioned to Don Zagier (Bonn), and with irritating speed
he showed that indeed the sequence satisfies the recurrence.
Alfred van der Poorten — A proof that Euler missed. . . (1979) ”

Nowadays, there are excellent implementations of this creative telescoping, including:

• HolonomicFunctions by Koutschan (Mathematica)
• Sigma by Schneider (Mathematica)
• ore algebra by Kauers, Jaroschek, Johansson, Mezzarobba (Sage)
(These are just the ones I use on a regular basis. . . )

∗ Someone’s “sour comment” after Henri Cohen’s report on Apéry’s proof at the ’78 ICM in Helsinki.
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Apéry ’78

“After a few days of fruitless effort the specific problem was
mentioned to Don Zagier (Bonn), and with irritating speed
he showed that indeed the sequence satisfies the recurrence.
Alfred van der Poorten — A proof that Euler missed. . . (1979) ”Nowadays, there are excellent implementations of this creative telescoping, including:

• HolonomicFunctions by Koutschan (Mathematica)
• Sigma by Schneider (Mathematica)
• ore algebra by Kauers, Jaroschek, Johansson, Mezzarobba (Sage)
(These are just the ones I use on a regular basis. . . )

∗ Someone’s “sour comment” after Henri Cohen’s report on Apéry’s proof at the ’78 ICM in Helsinki.
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Zagier’s search and Apéry-like numbers

• The Apéry numbers B(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)
for ζ(2) satisfy

(n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1, (a, b, c) = (11, 3,−1).

Are there other tuples (a, b, c) for which the solution defined by
u−1 = 0, u0 = 1 is integral?

Q
Beukers

• Apart from degenerate cases, Zagier found 6 sporadic integer solutions:

* C∗(n)

A
n∑
k=0

(
n

k

)3

B
bn/3c∑
k=0

(−1)k3n−3k

(
n

3k

)
(3k)!

k!3

C
n∑
k=0

(
n

k

)2(2k

k

)

* C∗(n)

D
n∑
k=0

(
n

k

)2(n+ k

n

)

E
n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)

F
n∑
k=0

(−1)k8n−k
(
n

k

)
CA(k)
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L-value interpolations

For primes p > 2, the Apéry numbers for ζ(3) satisfy

A(p−1
2 ) ≡ af (p) (mod p2),

with f(τ) = η(2τ)4η(4τ)4 =
∑
n>1

af (n)qn ∈ S4(Γ0(8)).

THM
Ahlgren–

Ono
2000

conjectured (and proved modulo p) by Beukers ’87

A(−1
2) = 16

π2L(f, 2)
THM
Zagier
2016

• Here, A(x) =
∞∑
k=0

(
x

k

)2(
x+ k

k

)2

is absolutely convergent for x ∈ C.

• Predicted by Golyshev based on motivic considerations,
the connection of the Apéry numbers with the double covering
of a family of K3 surfaces, and the Tate conjecture.

D. Zagier
Arithmetic and topology of differential equations
Proceedings of the 2016 ECM, 2017
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the connection of the Apéry numbers with the double covering
of a family of K3 surfaces, and the Tate conjecture.

D. Zagier
Arithmetic and topology of differential equations
Proceedings of the 2016 ECM, 2017

Interpolated sequences and critical L-values of modular forms Armin Straub
4 / 11



L-value interpolations, cont’d

• Zagier found 6 sporadic integer solutions C∗(n) to: ∗ one of A-F

(n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1 u−1 = 0, u0 = 1

There exists a weight 3 newform f∗(τ) =
∑

n>1 γn,∗q
n, so that

C∗(
p−1
2 ) ≡ γp,∗ (mod p).

THM
1985

-
2019

• C, D proved by Beukers–Stienstra (’85); A follows from their work
• E proved using a result Verrill (’10); B through p-adic analysis
• F conjectured by Osburn–S and proved by Kazalicki (’19) using

Atkin–Swinnerton-Dyer congruences for non-congruence cusp forms

For ∗ one of A-F , except E, there is α∗ ∈ Z such that

C∗(− 1
2 ) =

α∗
π2
L(f∗, 2).

For sequence E, res
x=−1/2

CE(x) =
6

π2
L(fE , 1).

THM
Osburn
S ’18
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L-value interpolations, cont’d

* C∗(n) f∗(τ) N∗ CM α∗

A
n∑
k=0

(
n

k

)3 η(4τ)5η(8τ)5

η(2τ)2η(16τ)2
32 Q(

√
−2) 8

B
bn/3c∑
k=0

(−1)k3n−3k

(
n

3k

)
(3k)!

k!3
η(4τ)6 16 Q(

√
−1) 8

C
n∑
k=0

(
n

k

)2(2k

k

)
η(2τ)3η(6τ)3 12 Q(

√
−3) 12

D
n∑
k=0

(
n

k

)2(n+ k

n

)
η(4τ)6 16 Q(

√
−1) 16

E
n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)
η(τ)2η(2τ)η(4τ)η(8τ)2 8 Q(

√
−2) 6

F
n∑
k=0

(−1)k8n−k
(
n

k

)
CA(k) q − 2q2 + 3q3 + . . . 24 Q(

√
−6) 6

C∗(−1
2) =

α∗
π2
L(f∗, 2)
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Challenge: A ≡ B

Can we extend the tools for A = B to A ≡ B?Q
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For primes p > 2 and n = p−1
2 ,

bn/3c∑
k=0

(−1)k3n−3k
(
n

3k

)
(3k)!

k!3

CB(n)

≡
n∑

k=0

(
n

k

)2(
n+ k

k

)
CD(n)

(mod p).

EG
Osburn-S

2018

For primes p > 2 and n = p−1
2 ,

n∑
k=0

(
n

k

)2(
n+ k

k

)2

≡ (−1)n
n∑

k=0

(
n

k

)2(
n+ k

k

)(
2k

n

)
(mod p2).

EG
Osburn-
S-Zudilin

2018

• Our proof of this congruence relies on finding (?!) the identity

RHS =

n∑
k=0

(−1)k
(

3n+ 1

n− k

)(
n+ k

k

)3

.
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Can we extend the tools for A = B to A ≡ B?Q

For primes p > 2 and n = p−1
2 ,

n∑
k=0

(−1)k
(
n+ k

k

)3(n
k

)3(
1− 3k(2Hk −Hn+k −Hn−k)

)
≡

n∑
k=0

(
n+ k

k

)2(n
k

)2

(mod p2).

LEM
Osburn-
S-Zudilin

2018

• Our proof of this congruence relies on finding the identity

RHS =
(−1)n

2

n∑
k=0

(
n+ k

n

)(
2n− k
n

)(
n

k

)4

×
(
2 + (n− 2k)(5Hk − 5Hn−k −Hn+k +H2n−k)

)
.
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Creative telescoping

Goal: a recurrence for
n∑
k=0

(
n

k

)2(n+ k

k

)2

=:

n∑
k=0

A(n, k)

Let Sn be such that Snf(n, k) = f(n+ 1, k).

• Suppose we have P (n, Sn) ∈ Q[n, Sn] and R(n, k) ∈ Q(n, k) so that

P (n, Sn)A(n, k) = (Sk − 1)R(n, k)A(n, k).

• Then: P (n, Sn)
∑
k∈Z

A(n, k) = 0

P (n, Sn) = (n+ 2)3S2
n − (2n+ 3)(17n2 + 51n+ 39)Sn + (n+ 1)3

R(n, k) =
4k4(2n+ 3)(4n2 − 2k2 + 12n+ 3k + 8)

(n− k + 1)2(n− k + 2)2

EG

Automatically obtained using Koutschan’s excellent HolonomicFunctions package for Mathematica.

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A = B
A. K. Peters, Ltd., 1st edition, 1996
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Challenge: Interpolating sequences

What is the proper way of defining C(−1
2)?Q

• For Apéry numbers A(n), Zagier used A(x) =
∞∑
k=0

(
x

k

)2(
x+ k

k

)2

.
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P (x, Sx)A(x) =
8

π2
(2x+ 3) sin2(πx)
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k=0

(
x
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x+ k

k

)2

.

P (x, Sx)A(x) =
8

π2
(2x+ 3) sin2(πx)

for all complex x, where P (x, Sx) is Apéry’s recurrence operator.

EG

• Creative telescoping: P (x, Sx)A(x, k) = (Sk − 1)R(x, k)A(x, k)

P (x, Sx)

K−1∑
k=0

A(x, k) = R(x,K)A(x,K)−R(x, 0)A(x, 0)

= R(x,K)A(x,K)

=
[
−8(2x+ 3)K2 +O(K)

] [ sin2(πx)

π2K2
+O

(
1

K3

)]
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Challenge: Interpolating sequences

What is the proper way of defining C(−1
2)?Q

• For Apéry numbers A(n), Zagier used A(x) =
∞∑
k=0

(
x

k

)2(
x+ k

k

)2

.

P (x, Sx)A(x) =
8

π2
(2x+ 3) sin2(πx)

for all complex x, where P (x, Sx) is Apéry’s recurrence operator.

EG

• For the ζ(2) Apéry numbers B(n), we use B(x) =
∞∑
k=0

(
x

k

)2(
x+ k

k

)
.

However:
• The series diverges if Re x < −1.
• Q(x, Sx)B(x) = 0 where Q(x, Sx) is Apéry’s recurrence operator.
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What is the proper way of defining C(−1
2)?Q

• For Apéry numbers A(n), Zagier used A(x) =
∞∑
k=0

(
x

k

)2(
x+ k

k

)2

.

CC(n) =

n∑
k=0

(
n

k

)2(
2k

k

)diverges for n 6∈ Z>0

= 3F2

(
−n,−n, 12

1, 1

∣∣∣∣4)

We use the interpolation CC(x) = Re 3F2

(
−x,−x, 12

1, 1

∣∣∣∣4).

EG
(C)

CE(n) =

n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)

=

(
2n

n

)
3F2

(
−n,−n, 12
1
2 − n, 1

∣∣∣∣∣−1

)

This has a simple pole at n = − 1
2 .

EG
(E)
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Challenge: Interpolating sequences

What is the proper way of defining C(−1
2)?Q

• For Apéry numbers A(n), Zagier used A(x) =
∞∑
k=0

(
x

k

)2(
x+ k

k

)2

.

C(n) =
n∑

k1,k2,k3,k4=0
k1+k2=k3+k4

4∏
i=1

(
n

ki

)(
n+ ki
ki

)
.

How to compute C(−1
2)?

EG

• RE: order 4, degree 15
• DE: order 7, degree 17

(2 analytic solutions)

For any odd prime p,

C(p−1
2 ) ≡ γ(p) (mod p2), η12(2τ) =

∑
n>1

γ(n)qn ∈ S6(Γ0(4))

THM
McCarthy,

Osburn,
S 2018

Is there a Zagier-type interpolation?Q
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Challenge: computing values of η(τ) at CM points

How to efficiently compute η(τ) for quadratic irrationalities τ?Q

Lots of papers would benefit from a CAS implementation!

• Dedekind eta function: the prototypical modular form of weight 1
2

η(τ) = eπiτ/12
∏
n>1

(1− e2πinτ ).

η(i) =
1

2π3/4
Γ(1

4)

θ3(i) =
1√

2π3/4
Γ(1

4) θ3(τ) =
∑
n∈Z

qn
2/2 =

η(τ)5

η(τ/2)2η(2τ)2

θ3(1 + i
√

2)4 =
Γ2(1

8)Γ2(3
8)

8
√

2π3

θ3

(
−1−i

√
3

2

)4
=

(
3− i

√
3
)

Γ6(1
3)

211/3π4
.

EG
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Challenge: computing values of η(τ) at CM points

How to efficiently compute η(τ) for quadratic irrationalities τ?Q

Lots of papers would benefit from a CAS implementation!

h∏
j=1

a−6
j |η(τj)|24 =

1

(2πd)6h

[ d∏
k=1

Γ
(
k
d

)(−d
k

)
]3w

where the product is over reduced binary quadratic forms
[aj , bj , cj ] of discriminant −d < 0. τj =

−bj+
√
−d

2aj

THM
Chowla–
Selberg

1967

here, −d is a fundamental discriminant; w is number of roots of unity in Q(
√
−d)

• The |η(τj)| only differ by an algebraic factor:

• τ2 = M · τ1 for some M ∈ GL2(Z).

• f(τ) =
η(τ)

η(M · τ)
is a modular function with f(τ1) =

η(τ1)

η(τ2)
.
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Challenge: computing values of η(τ) at CM points

How to efficiently compute η(τ) for quadratic irrationalities τ?Q

Lots of papers would benefit from a CAS implementation!

f a modular function, τ0 a quadratic irrationality
=⇒ f(τ0) is an algebraic number.

FACT
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Challenge: computing values of η(τ) at CM points

How to efficiently compute η(τ) for quadratic irrationalities τ?Q

Lots of papers would benefit from a CAS implementation!

f a modular function, τ0 a quadratic irrationality
=⇒ f(τ0) is an algebraic number.

FACT

• A · τ0 = τ0 for some A ∈ GL2(Z)

• Two modular functions are related by a modular equation:

P (f(A · τ), f(τ)) = 0

• Hence: f(τ0) is a root of P (x, x) = 0.

Complexity of modular equations increases very quickly.BUT
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Challenge: computing values of η(τ) at CM points

How to efficiently compute η(τ) for quadratic irrationalities τ?Q

Lots of papers would benefit from a CAS implementation!

f a modular function, τ0 a quadratic irrationality
=⇒ f(τ0) is an algebraic number.

FACT

• j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · q = e2πiτ

• Modular polynomial ΦN ∈ Z[x, y] such that ΦN (j(Nτ), j(τ)) = 0.

Φ2(x, y) = x3 + y3 − x2y2 + 24 · 3 · 31(x2 + xy2)

− 24 · 34 · 53(x2 + y2) + 34 · 53 · 4027xy

+ 28 · 37 · 56(x+ y)− 212 · 39 · 59

Φ11(x, y) = x12 + y12 − x11y11 + 8184x11y10 − 28278756x11y9

+ . . . several pages . . .+

+ 392423345094527654908696 . . . 100 digits . . . 000

EG

ΦN is O(N3 logN) bits

Φ11(x, y) due to
Kaltofen–Yui (1984)
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Challenge: computing values of η(τ) at CM points

How to efficiently compute η(τ) for quadratic irrationalities τ?Q

Lots of papers would benefit from a CAS implementation!

f a modular function, τ0 a quadratic irrationality
=⇒ f(τ0) is an algebraic number.

FACT

Other options for evaluating f(τ0):

• via PSLQ/LLL and rigorous bounds

• via class field theory (Shimura reciprocity)

To evaluate j( 1+
√
−23
2 ) , we determine its Galois conjugates :

(
x− j( 1+

√
−23
2 )

) (
x− j( 1+

√
−23
4 )

) (
x− j(−1+

√
−23

4 )

)
= x3 + 3491750x2 − 5151296875x+ 12771880859375

EG
class field

theory
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

D. McCarthy, R. Osburn, A. Straub
Sequences, modular forms and cellular integrals
Mathematical Proceedings of the Cambridge Philosophical Society, 2018

R. Osburn, A. Straub
Interpolated sequences and critical L-values of modular forms
Chapter 14 of the book: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory
Editors: J. Blümlein, P. Paule and C. Schneider; Springer, 2019, p. 327-349

R. Osburn, A. Straub, W. Zudilin
A modular supercongruence for 6F5: An Apéry-like story
Annales de l’Institut Fourier, Vol. 68, Nr. 5, 2018, p. 1987-2004

D. Zagier
Arithmetic and topology of differential equations
Proceedings of the 2016 ECM, 2017
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