Interpolated sequences and critical \dot{L} -values of modular forms

Minisymposium on Computer Algebra and Special Functions OPSFA-15, Hagenberg, Austria

Armin Straub

July 25, 2019

University of South Alabama

$$
A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 \qquad f(\tau) = \eta(2\tau)^4 \eta(4\tau)^4 = \sum_{n \ge 1} \alpha_n q^n
$$

¹, ⁵, ⁷³, ¹⁴⁴⁵, ³³⁰⁰¹, ⁸¹⁹⁰⁰⁵, ²¹⁴⁶⁰⁸²⁵, . . .

$$
A(\frac{p-1}{2}) \equiv \alpha_p \pmod{p^2}
$$

$$
A(-\frac{1}{2}) = \frac{16}{\pi^2}L(f, 2)
$$

Joint work with:

Robert Osburn (University College Dublin)

[Interpolated sequences and critical](#page-46-0) L-values of modular forms Armin Straub Communication Communication of the Armin Straub

• The Apéry numbers $1, 5, 73, 1445, \ldots$ $A(n) = \sum_{n=1}^{n}$ $k=0$ \sqrt{n} k $\sum^2/n+k$ k \setminus^2 satisfy $(n+1)^{3}u_{n+1} = (2n+1)(17n^{2}+17n+5)u_{n} - n^{3}u_{n-1}.$

THM
$$
\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}
$$
 is irrational.

* Someone's "sour comment" after Henri Cohen's report on Apéry's proof at the '78 ICM in Helsinki.

• The Apéry numbers
\n
$$
A(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2
$$
\nsatisfy
\n
$$
(n+1)^3 u_{n+1} = (2n+1)(17n^2 + 17n + 5)u_n - n^3 u_{n-1}.
$$
\n
$$
HMM \zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3} \text{ is irrational.}
$$

THM
$$
\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}
$$
 is irrational.

proof The same recurrence is satisfied by the "near"-integers
\n
$$
B(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 \left(\sum_{j=1}^{n} \frac{1}{j^3} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^3 {n \choose m} {n+m \choose m}}\right).
$$
\nThen, $\frac{B(n)}{A(n)} \to \zeta(3)$. But too fast for $\zeta(3)$ to be rational.

* Someone's "sour comment" after Henri Cohen's report on Apéry's proof at the '78 ICM in Helsinki.

[Interpolated sequences and critical](#page-0-0) L-values of modular forms Armin Straub Armin Straub Armin Straub

• The Apéry numbers $1, 5, 73, 1445, \ldots$ $A(n) = \sum_{n=1}^{n}$ $k=0$ \sqrt{n} k $\sum^2/n+k$ k \setminus^2 satisfy $(n+1)^{3}u_{n+1} = (2n+1)(17n^{2}+17n+5)u_{n} - n^{3}u_{n-1}.$

THM_{Apéry'78}
$$
\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}
$$
 is irrational.

" After a few days of fruitless effort the specific problem was mentioned to Don Zagier (Bonn), and with irritating speed he showed that indeed the sequence satisfies the recurrence.

Alfred van der Poorten — A proof that Euler missed... (1979) Alfred van der Poorten - A proof that Euler missed... (1979)

Someone's "sour comment" after Henri Cohen's report on Apéry's proof at the '78 ICM in Helsinki.

• The Apéry numbers $1, 5, 73, 1445, \ldots$ $A(n) = \sum_{n=1}^{n}$ $k=0$ \sqrt{n} k $\sum^2/n+k$ k \setminus^2 satisfy $(n+1)^{3}u_{n+1} = (2n+1)(17n^{2}+17n+5)u_{n} - n^{3}u_{n-1}.$

$$
\mathop{\rm THM}_{\text{Apéry '78}} \zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}
$$
 is irrational.

" After a few days of fruitless effort the specific problem was mentioned to Don Zagier (Bonn), and with irritating speed he showed that indeed the sequence satisfies the recurrence.

Alfred van der Poorten — A proof that Euler missed... (1979)
 Alfred van der Poorten — A proof that Euler missed... (1979)
 Alfred van der Poorten — A proof Alfred van der Poorten $- A$ proof that Euler missed... (1979)

Nowadays, there are excellent implementations of this creative telescoping , including:

- HolonomicFunctions by Koutschan (Mathematica)
- **Sigma** by Schneider (Mathematica)
- ore algebra by Kauers, Jaroschek, Johansson, Mezzarobba (Sage)

(These are just the ones I use on a regular basis. . .)

[∗] Someone's "sour comment" after Henri Cohen's report on Ap´ery's proof at the '78 ICM in Helsinki.

Zagier's search and Apéry-like numbers

• The Apéry numbers
$$
B(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}
$$
 for $\zeta(2)$ satisfy
\n $(n+1)^2 u_{n+1} = (an^2 + an + b)u_n - cn^2 u_{n-1},$ $(a, b, c) = (11, 3, -1).$

Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral? Q Beukers

Zagier's search and Apéry-like numbers

• The Apéry numbers
$$
B(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}
$$
 for $\zeta(2)$ satisfy

 $(n+1)^2u_{n+1} = (an^2 + an + b)u_n - cn^2u_{n-1}, \qquad (a, b, c) = (11, 3, -1).$ Q

Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral? Beukers

• Apart from degenerate cases, Zagier found 6 sporadic integer solutions:

**	$C_*(n)$		
A	$\sum_{k=0}^{n} {n \choose k}^3$	**	
B	$\sum_{k=0}^{\lfloor n/3 \rfloor} (-1)^k 3^{n-3k} {n \choose 3k} \frac{(3k)!}{k!^3}$	E	$\sum_{k=0}^{n} {n \choose k} {2k \choose k} {2(n-k) \choose n-k}$
C	$\sum_{k=0}^{n} {n \choose k}^2 {2k \choose k}$	F	$\sum_{k=0}^{n} (-1)^k 8^{n-k} {n \choose k} C_A(k)$

L-value interpolations

For primes $p > 2$, the Apéry numbers for $\zeta(3)$ satisfy $A(\frac{p-1}{2})$ $\frac{-1}{2}$) $\equiv a_f(p) \pmod{p^2}$, with $f(\tau) = \eta(2\tau)^4 \eta(4\tau)^4 = \sum a_f(n)q^n \in S_4(\Gamma_0(8)).$ $n>1$ THM Ahlgren– Ono 2000

conjectured (and proved modulo p) by Beukers '87

For primes $p > 2$, the Apéry numbers for $\zeta(3)$ satisfy $A(\frac{p-1}{2})$ $\frac{-1}{2}$) $\equiv a_f(p) \pmod{p^2}$, with $f(\tau) = \eta(2\tau)^4 \eta(4\tau)^4 = \sum$ $a_f(n)q^n \in S_4(\Gamma_0(8)).$ THM Ahlgren– Ono 2000

 $n\geqslant 1$

conjectured (and proved modulo p) by Beukers '87

THM
_{2ajser}
₂₀₁₆
$$
A(-\frac{1}{2}) = \frac{16}{\pi^2}L(f, 2)
$$

- Here, $A(x) = \sum_{k=0}^{\infty}$ $\left(x\right)$ k $\sum^2 (x+k)$ k $\big)^2$ is absolutely convergent for $x\in\mathbb{C}.$
- Predicted by Golyshev based on motivic considerations, the connection of the Apéry numbers with the double covering of a family of K3 surfaces, and the Tate conjecture.

D. Zagier

Arithmetic and topology of differential equations Proceedings of the 2016 ECM, 2017

[Interpolated sequences and critical](#page-0-0) L-values of modular forms Armin Straub Communication Communication of the Armin Straub

• Zagier found 6 sporadic integer solutions C∗(n) to: [∗] one of ^A-^F

$$
(n+1)^2u_{n+1} = (an^2 + an + b)u_n - cn^2u_{n-1} \qquad u_{-1} = 0, u_0 = 1
$$

• Zagier found 6 sporadic integer solutions C∗(n) to: [∗] one of ^A-^F

$$
(n+1)^2 u_{n+1} = (an^2 + an + b)u_n - cn^2 u_{n-1} \qquad u_{-1} = 0, u_0 = 1
$$

- C , D proved by Beukers-Stienstra ('85); A follows from their work
- E proved using a result Verrill ('10); B through p-adic analysis
- \overline{F} conjectured by Osburn–S and proved by Kazalicki ('19) using Atkin–Swinnerton-Dyer congruences for non-congruence cusp forms

Zagier found 6 sporadic integer solutions $C_*(n)$ to: $*$ one of $A-F$

$$
(n+1)^{2}u_{n+1} = (an^{2} + an + b)u_{n} - cn^{2}u_{n-1} \qquad u_{-1} = 0, u_{0} = 1
$$

- C, D proved by Beukers–Stienstra ('85); A follows from their work
- E proved using a result Verrill ('10); B through p -adic analysis
- \overline{F} conjectured by Osburn–S and proved by Kazalicki ('19) using Atkin–Swinnerton-Dyer congruences for non-congruence cusp forms

THM For $*$ one of $\boldsymbol{A}\text{-}\boldsymbol{F}$, except \boldsymbol{E} , there is $\alpha_*\in\mathbb{Z}$ such that $C_*(-\frac{1}{2}) = \frac{\alpha_*}{\pi^2}L(f_*, 2).$ Osburn S '18

• Zagier found 6 sporadic integer solutions $C_*(n)$ to: \bullet * one of A-F

$$
(n+1)^2 u_{n+1} = (an^2 + an + b)u_n - cn^2 u_{n-1} \qquad u_{-1} = 0, u_0 = 1
$$

- C, D proved by Beukers–Stienstra ('85); A follows from their work
- E proved using a result Verrill ('10); B through p-adic analysis
- \overline{F} conjectured by Osburn–S and proved by Kazalicki ('19) using Atkin–Swinnerton-Dyer congruences for non-congruence cusp forms

THM For $*$ one of $\boldsymbol{A}\text{-}\boldsymbol{F}$, except \boldsymbol{E} , there is $\alpha_*\in\mathbb{Z}$ such that $C_*(-\frac{1}{2}) = \frac{\alpha_*}{\pi^2}L(f_*, 2).$ For sequence E , $\operatorname{res}_{x=-1/2} C_E(x) = \frac{6}{\pi^2} L(f_E, 1)$. Osburn S '18

5 / 11

[Interpolated sequences and critical](#page-0-0) L-values of modular forms Armin Straub Armin Straub Armin Straub

$$
\begin{aligned}\n\frac{\text{EG}}{\text{Obturn-S}} & \text{For primes } p > 2 \text{ and } n = \frac{p-1}{2}, \\
&\sum_{k=0}^{\lfloor n/3 \rfloor} (-1)^k 3^{n-3k} \binom{n}{3k} \frac{(3k)!}{k!^3} \equiv \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k} \qquad (\text{mod } p).\n\end{aligned}
$$

$$
\begin{aligned}\n\frac{\text{EG}}{\text{Osburn-S}} & \text{For primes } p > 2 \text{ and } n = \frac{p-1}{2}, \\
&\sum_{k=0}^{\lfloor n/3 \rfloor} (-1)^k 3^{n-3k} \binom{n}{3k} \frac{(3k)!}{k!^3} \equiv \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k} \pmod{p}. \\
&\frac{\text{EG}}{\text{C}_{\text{B}}(n)} &\text{For primes } p > 2 \text{ and } n = \frac{p-1}{2}, \\
&\sum_{k=0}^{\text{S-zudilin}} \binom{n}{k}^2 \binom{n+k}{k}^2 \equiv (-1)^n \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k} \binom{2k}{n} \pmod{p^2}.\n\end{aligned}
$$

$$
\begin{aligned}\n\frac{\text{EG}}{\text{2018}} & \text{For primes } p > 2 \text{ and } n = \frac{p-1}{2}, \\
&\sum_{k=0}^{\lfloor n/3 \rfloor} (-1)^k 3^{n-3k} \binom{n}{3k} \frac{(3k)!}{k!^3} \equiv \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k} \pmod{p}.\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\frac{\text{EG}}{\text{G}_{\text{B}}(\text{m})} & \text{For primes } p > 2 \text{ and } n = \frac{p-1}{2}, \\
&\sum_{k=0}^{\text{S-Ludiline}} \binom{n}{k}^2 \binom{n+k}{k}^2 \equiv (-1)^n \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k} \binom{2k}{n} \pmod{p^2}.\n\end{aligned}
$$

• Our proof of this congruence relies on finding (?!) the identity

$$
\text{RHS} = \sum_{k=0}^{n} (-1)^k {3n+1 \choose n-k} {n+k \choose k}^3.
$$

Challenge: $A \equiv B$

LEM
\n
$$
\sum_{\substack{\text{S-2udilin}\\2018}}^{\text{LEM}} \text{For primes } p > 2 \text{ and } n = \frac{p-1}{2},
$$
\n
$$
\sum_{k=0}^{n} (-1)^k {n+k \choose k}^3 {n \choose k}^3 (1 - 3k(2H_k - H_{n+k} - H_{n-k}))
$$
\n
$$
\equiv \sum_{k=0}^{n} {n+k \choose k}^2 {n \choose k}^2 \pmod{p^2}.
$$

LEM
\n
$$
\sum_{\substack{\text{S-Zudiling} \\ 2018}}^{\text{LEM}} \text{For primes } p > 2 \text{ and } n = \frac{p-1}{2},
$$
\n
$$
\sum_{k=0}^{n} (-1)^k {n+k \choose k}^3 {n \choose k}^3 (1 - 3k(2H_k - H_{n+k} - H_{n-k}))
$$
\n
$$
\equiv \sum_{k=0}^n {n+k \choose k}^2 {n \choose k}^2 \pmod{p^2}.
$$

• Our proof of this congruence relies on finding the identity

$$
RHS = \frac{(-1)^n}{2} \sum_{k=0}^n {n+k \choose n} {2n-k \choose n} {n \choose k}^4
$$

$$
\times (2 + (n-2k)(5H_k - 5H_{n-k} - H_{n+k} + H_{2n-k})).
$$

7 / 11

Goal: a recurrence for
$$
\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 =: \sum_{k=0}^{n} A(n,k)
$$

Let S_n be such that $S_n f(n, k) = f(n + 1, k)$.

[Interpolated sequences and critical](#page-0-0) L-values of modular forms Armin Straub Armin Straub Armin Straub Armin Straub

Goal: a recurrence for
$$
\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 =: \sum_{k=0}^{n} A(n,k)
$$

Let S_n be such that $S_n f(n, k) = f(n + 1, k)$.

• Suppose we have $P(n, S_n) \in \mathbb{Q}[n, S_n]$ and $R(n, k) \in \mathbb{Q}(n, k)$ so that

 $P(n, S_n)A(n, k) = (S_k - 1)R(n, k)A(n, k).$

Goal: a recurrence for
$$
\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 =: \sum_{k=0}^{n} A(n,k)
$$

Let S_n be such that $S_n f(n, k) = f(n + 1, k)$.

• Suppose we have $P(n, S_n) \in \mathbb{Q}[n, S_n]$ and $R(n, k) \in \mathbb{Q}(n, k)$ so that $P(n, S_n)A(n, k) = (S_k - 1)R(n, k)A(n, k).$

• Then:
$$
P(n, S_n) \sum_{k \in \mathbb{Z}} A(n, k) = 0
$$

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger

$$
A = B
$$

A. K. Peters, Ltd., 1st edition, 1996

[Interpolated sequences and critical](#page-0-0) L-values of modular forms Armin Straub Armin Straub Armin Straub Armin Straub

Goal: a recurrence for
$$
\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 =: \sum_{k=0}^{n} A(n,k)
$$

Let S_n be such that $S_n f(n, k) = f(n + 1, k)$.

• Suppose we have $P(n, S_n) \in \mathbb{Q}[n, S_n]$ and $R(n, k) \in \mathbb{Q}(n, k)$ so that $P(n, S_n)A(n, k) = (S_k - 1)R(n, k)A(n, k).$

• Then:
$$
P(n, S_n) \sum_{k \in \mathbb{Z}} A(n, k) = 0
$$

$$
\mathsf{E}\mathsf{G}
$$

$$
P(n, S_n) = (n+2)^3 S_n^2 - (2n+3)(17n^2 + 51n + 39)S_n + (n+1)^3
$$

$$
R(n, k) = \frac{4k^4(2n+3)(4n^2 - 2k^2 + 12n + 3k + 8)}{(n-k+1)^2(n-k+2)^2}
$$

Automatically obtained using Koutschan's excellent HolonomicFunctions package for Mathematica.

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger $A = B$ A. K. Peters, Ltd., 1st edition, 1996

[Interpolated sequences and critical](#page-0-0) L-values of modular forms Armin Straub Armin Straub Armin Straub Armin Straub

What is the proper way of defining $C(-\frac{1}{2})$ What is the proper way of defining $C(-\frac{1}{2})$?

What is the proper way of defining
$$
C(-\frac{1}{2})
$$
?

• For Apéry numbers $A(n)$, Zagier used $A(x) = \sum^{\infty}$ $k=0$ \sqrt{x} k $\big\backslash^2/x+k$ k $\bigg)$ ².

$$
P(x, S_x)A(x) = \frac{8}{\pi^2}(2x+3)\sin^2(\pi x)
$$

for all complex x, where $P(x, S_x)$ is Apéry's recurrence operator.

What is the proper way of defining
$$
C(-\frac{1}{2})
$$
?

• For Apéry numbers $A(n)$, Zagier used $A(x) = \sum^{\infty}$ $k=0$ \sqrt{x} k $\big\backslash^2/x+k$ k $\bigg)$ ².

$$
P(x, S_x)A(x) = \frac{8}{\pi^2}(2x+3)\sin^2(\pi x)
$$

for all complex x, where $P(x, S_x)$ is Apéry's recurrence operator.

Creative telescoping: $P(x, S_x)A(x, k) = (S_k - 1)R(x, k)A(x, k)$

$$
P(x, S_x) \sum_{k=0}^{K-1} A(x, k) = R(x, K)A(x, K) - R(x, 0)A(x, 0)
$$

= R(x, K)A(x, K)

What is the proper way of defining
$$
C(-\frac{1}{2})
$$
?

• For Apéry numbers $A(n)$, Zagier used $A(x) = \sum^{\infty}$ $k=0$ \sqrt{x} k $\big\backslash^2/x+k$ k $\bigg)$ ².

$$
P(x, S_x)A(x) = \frac{8}{\pi^2}(2x+3)\sin^2(\pi x)
$$

for all complex x, where $P(x, S_x)$ is Apéry's recurrence operator.

Creative telescoping: $P(x, S_x)A(x, k) = (S_k - 1)R(x, k)A(x, k)$

$$
P(x, S_x) \sum_{k=0}^{K-1} A(x, k) = R(x, K)A(x, K) - R(x, 0)A(x, 0)
$$

= $R(x, K)A(x, K)$
= $[-8(2x + 3)K^2 + O(K)] \left[\frac{\sin^2(\pi x)}{\pi^2 K^2} + O(\frac{1}{K^3}) \right]$

What is the proper way of defining
$$
C(-\frac{1}{2})
$$
?

• For Apéry numbers $A(n)$, Zagier used $A(x) = \sum^{\infty}$ $k=0$ \sqrt{x} k $\big\backslash^2/x+k$ k $\bigg)$ ².

$$
P(x, S_x)A(x) = \frac{8}{\pi^2}(2x+3)\sin^2(\pi x)
$$

for all complex x, where $P(x, S_x)$ is Apéry's recurrence operator.

- For the $\zeta(2)$ Apéry numbers $B(n)$, we use $B(x) = \sum_{n=0}^{\infty} \binom{x}{n}$ $k=0$ k $\sum^2 (x+k)$ k . However:
	- The series diverges if Re $x < -1$.
	- $Q(x, S_x)B(x) = 0$ where $Q(x, S_x)$ is Apéry's recurrence operator.

What is the proper way of defining $C(-\frac{1}{2})$ What is the proper way of defining $C(-\frac{1}{2})$?

EG
(C)

$$
C_{\mathbf{C}}(n) = \sum_{k=0}^{n} {n \choose k}^2 {2k \choose k}
$$

What is the proper way of defining $C(-\frac{1}{2})$ What is the proper way of defining $C(-\frac{1}{2})$?

EG
\n(C)
$$
C_{\mathbf{C}}(n) = \sum_{k=0}^{n} {n \choose k}^2 \binom{2k}{k} = {}_3F_2 \binom{-n, -n, \frac{1}{2}}{1, 1} 4
$$

What is the proper way of defining
$$
C(-\frac{1}{2})
$$
?

EG

\n
$$
C_{\mathbf{C}}(n) = \sum_{k=0}^{n} {n \choose k}^2 \binom{2k}{k} = {}_3F_2 \binom{-n, -n, \frac{1}{2}}{1, 1} \Big| 4
$$

\nWe use the interpolation $C_{\mathbf{C}}(x) = \text{Re } {}_3F_2 \binom{-x, -x, \frac{1}{2}}{1, 1} \Big| 4$.

What is the proper way of defining
$$
C(-\frac{1}{2})
$$
?

EG

\n
$$
C_{\mathbf{C}}(n) = \sum_{k=0}^{n} {n \choose k}^2 \binom{2k}{k} = {}_3F_2 \binom{-n, -n, \frac{1}{2}}{1, 1} \Big| 4
$$

\nWe use the interpolation $C_{\mathbf{C}}(x) = \text{Re } {}_3F_2 \binom{-x, -x, \frac{1}{2}}{1, 1} \Big| 4$.

$$
\begin{array}{c}\n\mathbf{EG} \\
\hline\n\text{(E)}\n\end{array}\n\quad\nC_E(n) = \sum_{k=0}^{n} {n \choose k} {2k \choose k} {2(n-k) \choose n-k}
$$

What is the proper way of defining
$$
C(-\frac{1}{2})
$$
?

EG

\n
$$
C_{\mathbf{C}}(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{2k}{k} = {}_{3}F_{2} \binom{-n, -n, \frac{1}{2}}{1, 1} \Big| 4
$$
\nWe use the interpolation $C_{\mathbf{C}}(x) = \text{Re } {}_{3}F_{2} \binom{-x, -x, \frac{1}{2}}{1, 1} \Big| 4$.

$$
\begin{aligned}\n\mathbf{EG} \quad C_{\mathbf{E}}(n) &= \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} \binom{2(n-k)}{n-k} = \binom{2n}{n} {}_3F_2 \left(\begin{array}{c} -n, -n, \frac{1}{2} \\ \frac{1}{2} - n, 1 \end{array} \right) \\
\text{This has a simple pole at } n = -\frac{1}{2}.\n\end{aligned}
$$

What is the proper way of defining
$$
C(-\frac{1}{2})
$$
?

EG
\n
$$
C(n) = \sum_{\substack{k_1,k_2,k_3,k_4=0 \ k_1+k_2=k_3+k_4}}^{n} \prod_{i=1}^{4} {n \choose k_i} {n+k_i \choose k_i}.
$$
\nHow to compute $C(-\frac{1}{2})$?

\n

What is the proper way of defining
$$
C(-\frac{1}{2})
$$
?

• For Apéry numbers $A(n)$, Zagier used $A(x) = \sum^{\infty}$ $k=0$ \sqrt{x} k $\big\backslash^2/x+k$ k $\bigg)$ ².

EG
\n
$$
C(n) = \sum_{\substack{k_1, k_2, k_3, k_4 = 0 \ k_1 + k_2 = k_3 + k_4}}^{n} \prod_{i=1}^{4} {n \choose k_i} {n + k_i \choose k_i}.
$$
\nHow to compute $C(-\frac{1}{2})$?

\nThus, for any odd prime n .

\n**THM** For any odd prime n .

THM For any odd prime
$$
p
$$
,
\n^{0.60}
\n^{0.60}
\n^{0.61}
\n

Q Is there a Zagier-type interpolation?

Q How to efficiently compute $\eta(\tau)$ for quadratic irrationalities τ ?

Lots of papers would benefit from a CAS implementation!

Dedekind eta function: the prototypical modular form of weight $\frac{1}{2}$

$$
\eta(\tau) = e^{\pi i \tau/12} \prod_{n \geq 1} (1 - e^{2\pi i n \tau}).
$$

Q How to efficiently compute $\eta(\tau)$ for quadratic irrationalities τ ?

Lots of papers would benefit from a CAS implementation!

Dedekind eta function: the prototypical modular form of weight $\frac{1}{2}$

$$
\eta(\tau) = e^{\pi i \tau/12} \prod_{n \geq 1} (1 - e^{2\pi i n \tau}).
$$

$$
\begin{aligned}\n\mathbf{EG} \qquad \eta(i) &= \frac{1}{2\pi^{3/4}} \Gamma\left(\frac{1}{4}\right) \\
\theta_3(i) &= \frac{1}{\sqrt{2\pi^{3/4}}} \Gamma\left(\frac{1}{4}\right) \\
\theta_3(1+i\sqrt{2})^4 &= \frac{\Gamma^2\left(\frac{1}{8}\right)\Gamma^2\left(\frac{3}{8}\right)}{8\sqrt{2\pi^3}} \\
\theta_3\left(-\frac{1-i\sqrt{3}}{2}\right)^4 &= \frac{\left(3-i\sqrt{3}\right)\Gamma^6\left(\frac{1}{3}\right)}{2^{11/3}\pi^4}.\n\end{aligned}
$$

Q How to efficiently compute $\eta(\tau)$ for quadratic irrationalities τ ?

Lots of papers would benefit from a CAS implementation!

THM Chowla– **Selberg** 1967

$$
\prod_{j=1}^{h} a_j^{-6} |\eta(\tau_j)|^{24} = \frac{1}{(2\pi d)^{6h}} \bigg[\prod_{k=1}^{d} \Gamma\left(\frac{k}{d}\right)^{\left(\frac{-d}{k}\right)} \bigg]^{3w}
$$

where the product is over reduced binary quadratic forms $[a_j, b_j, c_j]$ of discriminant $-d < 0$. $\tau_j = \frac{-b_j + \sqrt{-d}}{2a_j}$ $_{2a_j}$

here, $-d$ is a fundamental discriminant; w is number of roots of unity in $\mathbb{Q}(\sqrt{-d})$

Q How to efficiently compute $\eta(\tau)$ for quadratic irrationalities τ ?

Lots of papers would benefit from a CAS implementation!

THM Chowla– **Selberg** 1967

$$
\prod_{j=1}^{h} a_j^{-6} |\eta(\tau_j)|^{24} = \frac{1}{(2\pi d)^{6h}} \left[\prod_{k=1}^{d} \Gamma\left(\frac{k}{d}\right)^{\left(\frac{-d}{k}\right)} \right]^{3w}
$$

where the product is over reduced binary quadratic forms $[a_i, b_i, c_i]$ of discriminant $-d < 0$. $-b_j+\sqrt{-d}$ $_{2a_j}$

here, $-d$ is a fundamental discriminant; w is number of roots of unity in $\mathbb{Q}(\sqrt{-d})$

• The $|\eta(\tau_i)|$ only differ by an algebraic factor:

•
$$
\tau_2 = M \cdot \tau_1
$$
 for some $M \in GL_2(\mathbb{Z})$.

•
$$
f(\tau) = \frac{\eta(\tau)}{\eta(M \cdot \tau)}
$$
 is a modular function with $f(\tau_1) = \frac{\eta(\tau_1)}{\eta(\tau_2)}$

.

Q How to efficiently compute $\eta(\tau)$ for quadratic irrationalities τ ?

Lots of papers would benefit from a CAS implementation!

FACT f a modular function, τ_0 a quadratic irrationality \implies $f(\tau_0)$ is an algebraic number.

- **Q** How to efficiently compute $\eta(\tau)$ for quadratic irrationalities τ ? Lots of papers would benefit from a CAS implementation!
- FACT f a modular function, τ_0 a quadratic irrationality \implies $f(\tau_0)$ is an algebraic number.
- $A \cdot \tau_0 = \tau_0$ for some $A \in GL_2(\mathbb{Z})$
- Two modular functions are related by a modular equation:

$$
P(f(A \cdot \tau), f(\tau)) = 0
$$

• Hence: $f(\tau_0)$ is a root of $P(x, x) = 0$.

BUT Complexity of modular equations increases very quickly.

- **Q** How to efficiently compute $\eta(\tau)$ for quadratic irrationalities τ ? Lots of papers would benefit from a CAS implementation!
- FACT f a modular function, τ_0 a quadratic irrationality \implies $f(\tau_0)$ is an algebraic number.

•
$$
j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + \cdots
$$
 $q = e^{2\pi i \tau}$

Modular polynomial $\Phi_N \in \mathbb{Z}[x, y]$ such that $\Phi_N(j(N\tau), j(\tau)) = 0$.

EG
\n
$$
\Phi_2(x,y) = x^3 + y^3 - x^2y^2 + 2^4 \cdot 3 \cdot 31(x^2 + xy^2)
$$
\n
$$
-2^4 \cdot 3^4 \cdot 5^3(x^2 + y^2) + 3^4 \cdot 5^3 \cdot 4027xy
$$
\n
$$
+ 2^8 \cdot 3^7 \cdot 5^6(x + y) - 2^{12} \cdot 3^9 \cdot 5^9
$$

- **Q** How to efficiently compute $\eta(\tau)$ for quadratic irrationalities τ ? Lots of papers would benefit from a CAS implementation!
- FACT f a modular function, τ_0 a quadratic irrationality \implies $f(\tau_0)$ is an algebraic number.

•
$$
j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + \cdots
$$
 $q = e^{2\pi i \tau}$

Modular polynomial $\Phi_N \in \mathbb{Z}[x, y]$ such that $\Phi_N(j(N\tau), j(\tau)) = 0$.

EG\n
$$
\Phi_2(x, y) = x^3 + y^3 - x^2y^2 + 2^4 \cdot 3 \cdot 31(x^2 + xy^2)
$$
\n
$$
\Phi_N \text{ is } O(N^3 \log N) \text{ bits } -2^4 \cdot 3^4 \cdot 5^3(x^2 + y^2) + 3^4 \cdot 5^3 \cdot 4027xy + 2^8 \cdot 3^7 \cdot 5^6(x + y) - 2^{12} \cdot 3^9 \cdot 5^9
$$
\n
$$
\Phi_{11}(x, y) = x^{12} + y^{12} - x^{11}y^{11} + 8184x^{11}y^{10} - 28278756x^{11}y^9 + \dots \text{ several pages ... } + 4392423345094527654908696 \dots 100 \text{ digits ... } 000
$$

[Interpolated sequences and critical](#page-0-0) L-values of modular forms Armin Straub Communication Communication of the Armin Straub

Q How to efficiently compute $\eta(\tau)$ for quadratic irrationalities τ ?

Lots of papers would benefit from a CAS implementation!

FACT f a modular function, τ_0 a quadratic irrationality \implies $f(\tau_0)$ is an algebraic number.

Other options for evaluating $f(\tau_0)$:

- via PSLQ/LLL and rigorous bounds
- via class field theory (Shimura reciprocity)

Q How to efficiently compute $\eta(\tau)$ for quadratic irrationalities τ ?

Lots of papers would benefit from a CAS implementation!

FACT f a modular function, τ_0 a quadratic irrationality \implies $f(\tau_0)$ is an algebraic number.

Other options for evaluating $f(\tau_0)$:

- via PSLQ/LLL and rigorous bounds
- via class field theory (Shimura reciprocity)

EG

class field To evaluate $j(\frac{1+\sqrt{-23}}{2})$, we determine its **Galois conjugates**: $\left(x-\frac{j(\frac{1+\sqrt{-23}}{2})}{j}\right)\left(x-\frac{j(\frac{1+\sqrt{-23}}{4})}{j}\right)\left(x-\frac{j(-1+\sqrt{-23}}{4})\right)$ $= x^3 + 3491750x^2 - 5151296875x + 12771880859375$ theory

THANK YOU!

Slides for this talk will be available from my website: <http://arminstraub.com/talks>

D. McCarthy, R. Osburn, A. Straub Sequences, modular forms and cellular integrals

Mathematical Proceedings of the Cambridge Philosophical Society, 2018

R. Osburn, A. Straub

Interpolated sequences and critical L-values of modular forms Chapter 14 of the book: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory Editors: J. Blümlein, P. Paule and C. Schneider: Springer, 2019, p. 327-349

R. Osburn, A. Straub, W. Zudilin A modular supercongruence for $6F_5$: An Apéry-like story Annales de l'Institut Fourier, Vol. 68, Nr. 5, 2018, p. 1987-2004

D. Zagier

Arithmetic and topology of differential equations Proceedings of the 2016 ECM, 2017