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π, ζ(3), ζ(5), . . . are algebraically independent over Q.CONJ

• Apéry (1978): ζ(3) is irrational

• Open: ζ(5) is irrational

• Open: ζ(3) is transcendental

• Open: ζ(3)/π3 is irrational

based on joint work(s) with:

Marc Chamberland
(Grinnell College)

Wadim Zudilin
(Radboud University)
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Mit der Tür ins Haus fallen. . . Falling into the house with the door. . .

The minimal recurrence for A(s)(n) =

n∑
k=0

(
n

k

)s

has order b s+1
2 c.

CONJ
Franel,
1895

A(s)(n) satisfies a recurrence of order b s+1
2 c.THM

Stoll ’97

Is that recurrence of minimal order?OPEN

Any telescoping recurrence for
n∑

k=0

(
n

k

)s

solved by certain sequences

A
(s)
j (n) if 0 6 2j < s.

The Apéry limits are:

lim
n→∞

A
(s)
j (n)

A(s)(n)
= [t2j ]

(
πt

sin(πt)

)s

∈ π2jQ>0

Moreover, A(s)
j (n) with 0 6 2j < s are linearly independent, so that any

telescoping recurrence has order at least b s+1
2 c.

THM
S-Zudilin

’21
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Apéry numbers and the irrationality of ζ(3)

• The Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

satisfy

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.

ζ(3) =
∞∑
n=1

1

n3
is irrational.

THM
Apéry ’78

The same recurrence is satisfied by the “near”-integers

B(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2( n∑
j=1

1

j3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)) .
Then, B(n)

A(n)
→ ζ(3). But too fast for ζ(3) to be rational.

proof

“After a few days of fruitless effort the specific problem was men-
tioned to Don Zagier (Bonn), and with irritating speed he showed
that indeed the sequence satisfies the recurrence.

Alfred van der Poorten — A proof that Euler missed. . . (1979) ”
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Background: Creative telescoping

A telescoping recurrence for
n∑

k=0

(
n

k

)2(n+ k

k

)2

=: a(n, k)

Goal

N,K shift operators in n and k: Na(n, k) = a(n+ 1, k)

• Suppose we have P (n,N) ∈ Q[n,N ] and R(n, k) ∈ Q(n, k) so that:

P (n,N)a(n, k) = (K − 1)R(n, k)a(n, k)

= b(n, k + 1)− b(n, k)

• Then: P (n,N)
∑
k∈Z

a(n, k) = 0 Assuming lim
k→±∞

b(n, k) = 0.

P (n,N) = (n+ 2)3N2 − (2n+ 3)(17n2 + 51n+ 39)N + (n+ 1)3

R(n, k) =
4k4(2n+ 3)(4n2 − 2k2 + 12n+ 3k + 8)

(n− k + 1)2(n− k + 2)2

EG

R(n, k) is the certificate of the telescoping recurrence operator P (n,N).

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A = B
A. K. Peters, Ltd., 1st edition, 1996
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Background: Poincaré and Perron

• Normalized general homogeneous linear recurrence of order d:

un+d + pd−1(n) un+d−1 + · · ·+ p1(n) un+1 + p0(n) un = 0

• If lim
n→∞

pk(n) = ck, then the characteristic polynomial is:

λd + cd−1 λ
d−1 + · · ·+ c1 λ+ c0 =

d∏
k=1

(λ− λk )

Suppose the | λk | are distinct. Then, for any solution un,

lim
n→∞

un+1

un
= λk (P)

for some k ∈ {1, . . . , d}, unless un is eventually zero.

THM
Poincaré

1885

Suppose, in addition, p0(n) 6= 0 for all n > 0.

Then, for each λk , there exists a un such that (P) holds.

THM
Perron
1909
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Another look at Apéry’s recurrence and limit

• Apéry’s recurrence has order 2 and degree 3:

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.
• u−1 = 0, u0 = 1: Apéry numbers A(n) 1, 5, 73, 1445, 33001, . . .

• u0 = 0, u1 = 1: 2nd solution B(n) 0, 1, 117
8
, 62531

216
, 11424695

1728
, . . .

lim
n→∞

B(n)

A(n)
=
ζ(3)

6

THM
Apéry ’78

• Characteristic polynomial n2− 34n+ 1 has roots (1±
√

2)4 ≈ 33.97, 0.0294.

A(n), B(n) grow like (1 +
√

2)4n.

• By Perron’s theorem, there is a (unique) solution

C(n) = γA(n) +B(n) with lim
n→∞

C(n+ 1)

C(n)
= (1−

√
2)4.

↓
0 = γ + lim

n→∞

B(n)

A(n)

A(n)ζ(3)− 6B(n) is “Perron’s small solution”.COR

This is a small linear form in 1 and ζ(3).

Tools to construct the solutions guaranteed by Perron’s theorem??
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Another look at Apéry’s recurrence and limit
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Apéry ’78

• Characteristic polynomial n2− 34n+ 1 has roots (1±
√

2)4 ≈ 33.97, 0.0294.
A(n), B(n) grow like (1 +

√
2)4n.

• By Perron’s theorem, there is a (unique) solution

C(n) = γA(n) +B(n) with lim
n→∞

C(n+ 1)

C(n)
= (1−

√
2)4.

↓
0 = γ + lim

n→∞

B(n)

A(n)

A(n)ζ(3)− 6B(n) is “Perron’s small solution”.COR

This is a small linear form in 1 and ζ(3).

Tools to construct the solutions guaranteed by Perron’s theorem??
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Tools to construct the solutions guaranteed by Perron’s theorem??
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Approaches to proving Apéry limits

How to prove lim
n→∞

B(n)

A(n)
=
ζ(3)

6
?

Q

1 Via explicit expressions: (Apéry, ’78)

B(n) =
1

6

n∑
k=0

(
n

k

)2(
n+ k

k

)2
 n∑

j=1

1

j3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)


2 Via integral representations: (Beukers, ’79)

(−1)n
∫ 1

0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)nzn(1− z)n

(1− (1− xy)z)n+1
dxdydz = A(n)ζ(3)− 6B(n)

3 Via hypergeometric series representations: (Gutnik, ’79)

−1

2

∞∑
t=1

R′n(t) = A(n)ζ(3)− 6B(n), where Rn(t) =

(
(t− 1) · · · (t− n)

t(t+ 1) · · · (t+ n)

)2

4 Via modular forms (Beukers ’87, Zagier ’03, Yang ’07)

5 Via continued fractions (for recurrences of order 2)
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Franel numbers

A(s)(n) =
n∑

k=0

(
n

k

)s

are the (generalized) Franel numbers.
DEF
Franel
1894

• A(1)(n) = 2n

un+1 = 2un

• A(2)(n) =
(
2n
n

)
(n+ 1)un+1 = 2(2n+ 1)un

• A(3)(n) = 1, 2, 10, 56, 346, 2252, 15184, 104960, 739162, . . .
(n+ 1)2un+1 = (7n2 + 7n+ 2)un + 8n2un−1 (Franel, 1894)

• A(4)(n) = 1, 2, 18, 164, 1810, 21252, 263844, 3395016, 44916498, . . .
(n+ 1)3un+1 = 2(2n+ 1)(3n2 + 3n+ 1)un + 4n(16n2 − 1)un−1 (Franel, 1895)

The minimal recurrence for A(s)(n) has order b s+1
2 c

and degree s− 1. (spoiler: the degree part is not true)

CONJ
Franel,
1895
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Franel’s conjecture

The minimal recurrence for A(s)(n) has order b s+1
2 c

and degree s− 1.

CONJ
Franel,
1895

• Perlstadt ’86: order 3 recurrences for s = 5, 6 of degrees 6, 9
computed using MACSYMA and creative telescoping

A(s)(n) satisfies a recurrence of order b s+1
2 c.THM

Stoll ’97

Cusick ’89 also constructs such recurrences.

Is that recurrence of minimal order?OPEN

The minimal recurrence for A(s)(n) has order m = b s+1
2 c and

degree =

{
1
3m(m2 − 1) + 1, for even s,

1
3m

3 − 1
2m

2 + 2
3m+ (−1)m−1

4 , for odd s.

CONJ
Bostan

’21

If true, the degree grows like s3/24.

• Verified at least for s 6 20.
using MinimalRecurrence from the LREtools Maple package

• Goal: The minimal telescoping recurrence for A(s)(n) has order > b s+1
2 c.
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Sums of powers of binomials, their Apéry limits, and Franel’s suspicions Armin Straub
9 / 13



Franel’s conjecture

The minimal recurrence for A(s)(n) has order b s+1
2 c

((((((((
and degree s− 1.

CONJ
Franel,
1895

• Perlstadt ’86: order 3 recurrences for s = 5, 6 of degrees 6, 9
computed using MACSYMA and creative telescoping

A(s)(n) satisfies a recurrence of order b s+1
2 c.THM

Stoll ’97

Cusick ’89 also constructs such recurrences.

Is that recurrence of minimal order?OPEN

The minimal recurrence for A(s)(n) has order m = b s+1
2 c and

degree =

{
1
3m(m2 − 1) + 1, for even s,

1
3m

3 − 1
2m

2 + 2
3m+ (−1)m−1

4 , for odd s.

CONJ
Bostan

’21

If true, the degree grows like s3/24.

• Verified at least for s 6 20.
using MinimalRecurrence from the LREtools Maple package

• Goal: The minimal telescoping recurrence for A(s)(n) has order > b s+1
2 c.
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How to prove lower bounds for orders of recurrences?

•
n∑

k=0

(
n

k

)2(n+ k

k

)2

: recurrence of order 2 (Apéry ’78)

•
n∑

k=0

(
n

k

)s

: recurrence of order b s+1
2 c (Stoll ’97)

Could there be recurrences of lower order? . . . and higher degree

EG

• For fixed sequence, order 1 can be ruled out using Hyper, (Petkovšek ’92)

an algorithm to compute order 1 (right) factors of recurrence operators.

• There are algorithms for fixed recurrence operators (Beke 1894, Bronstein ’94,
Zhou–van Hoeij ’19, . . . )

for computing factors of differen(tial/ce) operators.

• For Franel numbers, order 1 can be ruled out for all s > 3 (Yuan–Lu–Schmidt ’08)

using congruential properties.

• If A(n+ 1)/A(n)→ µ for µ ∈ Q̄ of degree d, then A(n) cannot satisfy a
recurrence over Q of order less than d. (McIntosh ’89)

For Apéry numbers: µ = (1 +
√

2)4.
For Franel numbers: µ = 2s. Not helpful!
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an algorithm to compute order 1 (right) factors of recurrence operators.

• There are algorithms for fixed recurrence operators (Beke 1894, Bronstein ’94,
Zhou–van Hoeij ’19, . . . )

for computing factors of differen(tial/ce) operators.

• For Franel numbers, order 1 can be ruled out for all s > 3 (Yuan–Lu–Schmidt ’08)

using congruential properties.

• If A(n+ 1)/A(n)→ µ for µ ∈ Q̄ of degree d, then A(n) cannot satisfy a
recurrence over Q of order less than d. (McIntosh ’89)
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For Apéry numbers: µ = (1 +
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Apéry limits and lower bounds

Any telescoping recurrence for
n∑

k=0

(
n

k

)s

solved by A
(s)
j (n) if 0 6 2j < s.

(fine print: for large enough n)

THM
S-Zudilin

’21

A(s)(n, t) :=
n∑

k=0

(
n

k

)s
 k∏
j=1

(
1− t

j

) n−k∏
j=1

(
1 +

t

j

)−s =
∑
j>0

A
(s)
j (n) t2j

lim
n→∞

A
(s)
j (n)

A(s)(n)
= [t2j ]

(
πt

sin(πt)

)s

∈ π2jQ>0

THM
S-Zudilin

’21
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• Our proof is based on showing locally uniform convergence in t of

lim
n→∞

A(s)(n, t)
n∑

k=0

(
n

k

)s =

(
πt

sin(πt)

)s

.

For large n and k ≈ n/2,

k∏
j=1

(
1− t

j

) n−k∏
j=1

(
1 +

t

j

)
≈
∞∏
j=1

(
1− t

j

)(
1 +

t

j

)
=

sin(πt)

πt
.

“poof”
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THM
S-Zudilin

’21

• In the case j = 1, this settles previous conjectures:

• s = 3, 4 numerically observed by Cusick (1979)
• s = 3 proved by Zagier (2009)
• s = 5 conjectured by Almkvist, van Straten, Zudilin (2008)
• s > 3 conjectured by Chamberland–S (2020)

Any telescoping recurrence for
n∑

k=0

(
n

k

)s

has order at least b s+1
2 c.

THM
S-Zudilin

’21

• This implies Franel’s conjecture on the exact order
if the minimal-order recurrence is telescoping. True at least for s 6 30.
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Conclusions and some open questions

• Applications of Apéry limits:
• Irrationality proofs for ζ(2) and ζ(3)
• Explicitly construct the solutions guaranteed by Perron’s theorem
• Continued fractions
• Prove lower bounds on orders of recurrences new!

• Many open questions! For instance:

• Cusick ’89 and Stoll ’97 construct recurrences for Franel numbers.
Can these constructions produce telescoping recurrences?

• What can we learn from other families of binomial sums?
Also, it would be nice to simplify some of the technical steps in the arguments.

• Can we (uniformly) establish the conjectural Apéry limits for CY DE’s?
• Can we explain when CT falls short? And algorithmically “fix” this

issue?
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• Can we explain when CT falls short? And algorithmically “fix” this

issue?
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks
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