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π, ζ(3), ζ(5), . . . are algebraically independent over Q.CONJ

• Apéry (1978): ζ(3) is irrational

• Open: ζ(5) is irrational

• Open: ζ(3) is transcendental

• Open: ζ(3)/π3 is irrational

based on joint work(s) with:

Marc Chamberland
(Grinnell College)

Wadim Zudilin
(Radboud University)
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The last shall be first: conclusions

The minimal recurrence for A(s)(n) =

n∑
k=0

(
n

k

)s
has order b s+1

2 c.
CONJ

Franel,
1895

A(s)(n) satisfies a recurrence of order b s+1
2 c.THM

Stoll ’97

n∑
k=0

(
n

k

)s  k∏
j=1

(
1− t

j

) n−k∏
j=1

(
1 +

t

j

)−s =
∑
j>0

A
(s)
j (n) t2j

Any telescoping recurrence for
n∑
k=0

(
n

k

)s
solved by A

(s)
j (n) if 0 6 2j < s.

(fine print: for large enough n)

The Apéry limits are:

lim
n→∞

A
(s)
j (n)

A(s)(n)
= [t2j ]

(
πt

sin(πt)

)s
∈ π2jQ>0

Moreover, A(s)
j (n) with 0 6 2j < s are linearly independent, so that any

telescoping recurrence has order at least b s+1
2 c.

THM
S-Zudilin

’21
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A victory for the French peasant. . . ∗

• The Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

satisfy

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.

ζ(3) =
∞∑
n=1

1

n3
is irrational.

THM
Apéry ’78

∗ Someone’s “sour comment” after Henri Cohen’s report on Apéry’s proof at the ’78 ICM in Helsinki.
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THM
Apéry ’78

The same recurrence is satisfied by the “near”-integers

B(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2
 n∑
j=1

1

j3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
 .

Then, B(n)
A(n) → ζ(3). But too fast for ζ(3) to be rational.

proof

∗ Someone’s “sour comment” after Henri Cohen’s report on Apéry’s proof at the ’78 ICM in Helsinki.
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“After a few days of fruitless effort the specific problem was
mentioned to Don Zagier (Bonn), and with irritating speed
he showed that indeed the sequence satisfies the recurrence.
Alfred van der Poorten — A proof that Euler missed. . . (1979) ”

Nowadays, there are excellent implementations of this creative telescoping, including:
• HolonomicFunctions by Koutschan (Mathematica)
• Sigma by Schneider (Mathematica)
• ore algebra by Kauers, Jaroschek, Johansson, Mezzarobba (Sage)
(These are just the ones I use on a regular basis. . .

∗ Someone’s “sour comment” after Henri Cohen’s report on Apéry’s proof at the ’78 ICM in Helsinki.
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Background: Creative telescoping

A telescoping recurrence for
n∑
k=0

(
n

k

)2(n+ k

k

)2

=: a(n, k)

Goal

N,K shift operators in n and k: Na(n, k) = a(n+ 1, k)

• Suppose we have P (n,N) ∈ Q[n,N ] and R(n, k) ∈ Q(n, k) so that:

P (n,N)a(n, k) = (K − 1)R(n, k)a(n, k)

= b(n, k + 1)− b(n, k)

• Then: P (n,N)
∑
k∈Z

a(n, k) = 0 Assuming lim
k→±∞

b(n, k) = 0.

P (n,N) = (n+ 2)3N2 − (2n+ 3)(17n2 + 51n+ 39)N + (n+ 1)3

R(n, k) =
4k4(2n+ 3)(4n2 − 2k2 + 12n+ 3k + 8)

(n− k + 1)2(n− k + 2)2

EG

R(n, k) is the certificate of the telescoping recurrence operator P (n,N).

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A = B
A. K. Peters, Ltd., 1st edition, 1996
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Background: Poincaré and Perron

• Normalized general homogeneous linear recurrence of order d:

un+d + pd−1(n) un+d−1 + · · ·+ p1(n) un+1 + p0(n) un = 0

• If lim
n→∞

pk(n) = ck, then the characteristic polynomial is:

λd + cd−1 λ
d−1 + · · ·+ c1 λ+ c0 =

d∏
k=1

(λ− λk )

Suppose the | λk | are distinct. Then, for any solution un,

lim
n→∞

un+1

un
= λk (P)

for some k ∈ {1, . . . , d}, unless un is eventually zero.

THM
Poincaré

1885

Suppose, in addition, p0(n) 6= 0 for all n > 0.

Then, for each λk , there exists a un such that (P) holds.

THM
Perron
1909
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for some k ∈ {1, . . . , d}, unless un is eventually zero.

THM
Poincaré

1885

Suppose, in addition, p0(n) 6= 0 for all n > 0.

Then, for each λk , there exists a un such that (P) holds.

THM
Perron
1909

For un+2 − 2un+1 + (1 + 1
n2 )un = 0, we have λ1 = λ2 = 1.

However, (P) does not hold for any real un.

EG
Kooman

1989

There are two complex solutions asymptotic to nr with r = exp(±πi/3).
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1885

Suppose, in addition, p0(n) 6= 0 for all n > 0.

Then, for each λk , there exists a un such that (P) holds.

THM
Perron
1909

For αnun+2 +(αn+1−αn)un+1−αn+1un = 0, we have λ1, λ2 = ±1.

However, (P) holds for all un with RHS = 1. αn = 1 + (−1)n
n

EG
Kooman

1989
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Another look at Apéry’s recurrence and limit

• Apéry’s recurrence has order 2 and degree 3:

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.
• u−1 = 0, u0 = 1: Apéry numbers A(n) 1, 5, 73, 1445, 33001, . . .

• u0 = 0, u1 = 1: 2nd solution B(n) 0, 1, 117
8
, 62531

216
, 11424695

1728
, . . .

lim
n→∞

B(n)

A(n)
=
ζ(3)

6

THM
Apéry ’78

• Characteristic polynomial n2− 34n+ 1 has roots (1±
√

2)4 ≈ 33.97, 0.0294.

A(n), B(n) grow like (1 +
√

2)4.

• By Perron’s theorem, there is a (unique) solution

C(n) = γA(n) +B(n) with lim
n→∞

C(n+ 1)

C(n)
= (1−

√
2)4.

↓
0 = γ + lim

n→∞

B(n)

A(n)

A(n)ζ(3)− 6B(n) is “Perron’s small solution”.COR

This is a small linear form in 1 and ζ(3).

Tools to construct the solutions guaranteed by Perron’s theorem??
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Another look at Apéry’s recurrence and limit
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A motivating example

• The (central) Delannoy numbers A(n) =
n∑
k=0

(
n

k

)(
n+ k

k

)
satisfy

(n+ 1)un+1 = 3(2n+ 1)un − nun−1 A(−1) = 0, A(0) = 1

count lattice paths from (0, 0) to (n, n) using the steps (0, 1), (1, 0) and (1, 1)

• Let B(n) be the 2nd solution with initial conditions B(0) = 0, B(1) = 1.

A(n) = 1, 3, 13, 63, 321, 1683, 8989, 48639, . . .

B(n) =

Q(n) :=
B(n)

A(n)
=

Q(n)−Q(n− 1) =

lim
n→∞

B(n)

A(n)
=

1

2
ln 2 =

∞∑
n=1

1

nA(n)A(n− 1)

Q(3) =
1

2x
− 1

4x2
+

1

6x3
− 1

8x4
+

1

10x5
− 1

12x6
+O(x−7)
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A motivating example
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Explore Apéry limits

1 Pick a binomial sum A(n).
Using creative telescoping, compute a recurrence satisfied by A(n).

2 Compute the initial terms of a secondary solution B(n) to the recurrence.
3 Try to identify limn→∞B(n)/A(n),

either numerically or as a power series in an additional parameter.

Use
n∑
k=0

(
n

k

)(
n− k
k

)
xk to rediscover the CF

arctan(z) =
z

1+

12z2

3+

22z2

5+
· · · n2z2

(2n+ 1)+
· · ·

EG
HW

Start with
n∑
k=0

(
n

k

)(
n+ k

k

)2

xk and
n∑
k=0

(
n

k

)(
n+ k

k

)3

xk.

Compare findings with those by Zudilin on simultaneous approximations to the
logarithm, dilogarithm and trilogarithm.

EG
HW

For
n∑
k=0

(
n

k

)2(
3k

n

)
, determine and prove the Apéry limits.

This is one of many cases conjectured by Almkvist, van Straten and Zudilin (2008)
for CY DE’s. Can we establish all these limits in a uniform fashion?

EG
bonus
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Approaches to proving Apéry limits

How to prove lim
n→∞

B(n)

A(n)
=
ζ(3)

6
?

Q

1 Via explicit expressions: (Apéry, ’78)

B(n) =
1

6

n∑
k=0

(
n

k

)2(
n+ k

k

)2
 n∑
j=1

1

j3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)


2 Via integral representations: (Beukers, ’79)

(−1)n
∫ 1

0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)nzn(1− z)n

(1− (1− xy)z)n+1
dxdydz = A(n)ζ(3)− 6B(n)

3 Via hypergeometric series representations: (Gutnik, ’79)

−1

2

∞∑
t=1

R′n(t) = A(n)ζ(3)− 6B(n), where Rn(t) =

(
(t− 1) · · · (t− n)

t(t+ 1) · · · (t+ n)

)2

4 Via modular forms (Beukers ’87, Zagier ’03, Yang ’07)

5 Via continued fractions (for recurrences of order 2)
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How to prove lim
n→∞

B(n)

A(n)
=
ζ(3)

6
?

Q

1 Via explicit expressions: (Apéry, ’78)
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Continued fractions and Apéry limits

(bn 6= 0)C =
a1
b1+

a2
b2+

a3
b3+

. . . :=
a1

b1 + a2
b2+

a3
b3+...

1-1 correspondence between CFs and order 2 recurrences, such that

the value of the CF is an Apéry limit: C = lim
n→∞

B(n)

A(n)

THM

• Here, A(n), B(n) are the solutions to un = bnun−1 + anun−2
with A(−1) = 0, A(0) = 1 and B(0) = 0, B(1) = a1.
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• Here, A(n), B(n) are the solutions to un = bnun−1 + anun−2
with A(−1) = 0, A(0) = 1 and B(0) = 0, B(1) = a1.

The n-th convergent is Cn :=
a1
b1+

a2
b2+

. . .
an
bn

=
B(n)

A(n)
.

proof

Sums of powers of binomials, their Apéry limits, and Franel’s suspicions Armin Straub
10 / 20



Continued fractions and Apéry limits
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A(n) =

n∑
k=0

(
n

k

)(
n+ k

k

)
xk solves (n+ 1)un+1 = (2x+ 1)(2n+ 1)un − nun−1.

Let B(n) be the solution with B(0) = 0, B(1) = 1.

Hence, n!A(n), n!B(n) solve un+1 = (2x+ 1)(2n+ 1) un

bn+1

− n2 un−1

an+1

.

Apéry limit and equivalent CF:

lim
n→∞

B(n)

A(n)
=

1

(2x+ 1)−
12

3(2x+ 1)−
22

5(2x+ 1)−
· · · = 1

2
ln

(
1 +

1

x

)

EG

Sums of powers of binomials, their Apéry limits, and Franel’s suspicions Armin Straub
10 / 20



Continued fractions and Apéry limits
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n→∞

B(n)

A(n)
=

1

(2x+ 1)−
12

3(2x+ 1)−
22

5(2x+ 1)−
· · · = 1

2
ln

(
1 +

1

x

)

EG
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Franel numbers

A(s)(n) =
n∑
k=0

(
n

k

)s
are the (generalized) Franel numbers.

DEF
Franel
1894

• A(1)(n) = 2n

un+1 = 2un

• A(2)(n) =
(
2n
n

)
(n+ 1)un+1 = 2(2n+ 1)un

• A(3)(n) = 1, 2, 10, 56, 346, 2252, 15184, 104960, 739162, . . .
(n+ 1)2un+1 = (7n2 + 7n+ 2)un + 8n2un−1 (Franel, 1894)

• A(4)(n) = 1, 2, 18, 164, 1810, 21252, 263844, 3395016, 44916498, . . .
(n+ 1)3un+1 = 2(2n+ 1)(3n2 + 3n+ 1)un + 4n(16n2 − 1)un−1 (Franel, 1895)

The minimal recurrence for A(s)(n) has order b s+1
2 c

and degree s− 1. (spoiler: the degree part is not true)

CONJ
Franel,
1895
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Franel’s conjecture

The minimal recurrence for A(s)(n) has order b s+1
2 c

and degree s− 1.

CONJ
Franel,
1895

• Perlstadt ’86: order 3 recurrences for s = 5, 6 of degrees 6, 9
computed using MACSYMA and creative telescoping

A(s)(n) satisfies a recurrence of order b s+1
2 c.THM

Stoll ’97

Cusick ’89 also constructs such recurrences.

The minimal recurrence for A(s)(n) has order m = b s+1
2 c and

degree =

{
1
3m(m2 − 1) + 1, for even s,

1
3m

3 − 1
2m

2 + 2
3m+ (−1)m−1

4 , for odd s.

CONJ
Bostan

’21

If true, the degree grows like s3/24.

• Verified at least for s 6 20.
using MinimalRecurrence from the LREtools Maple package

• Goal: The minimal telescoping recurrence for A(s)(n) has order > b s+1
2 c.

Sums of powers of binomials, their Apéry limits, and Franel’s suspicions Armin Straub
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How to prove lower bounds for orders of recurrences?

•
n∑
k=0

(
n

k

)2(n+ k

k

)2

: recurrence of order 2 (Apéry ’78)

•
n∑
k=0

(
n

k

)s
: recurrence of order b s+1

2 c (Stoll ’97)

Could there be recurrences of lower order? . . . and higher degree

EG

• For fixed sequence, order 1 can be ruled out using Hyper, (Petkovšek ’92)

an algorithm to compute order 1 (right) factors of recurrence operators.

• For Franel numbers, order 1 can be ruled out for all s > 3 (Yuan–Lu–Schmidt ’08)

using congruential properties.

• There are algorithms for fixed recurrence operators (Beke 1894, Bronstein ’94,
Zhou–van Hoeij ’19, . . . )

for computing factors of differen(tial/ce) operators.

• If A(n+ 1)/A(n)→ µ for µ ∈ Q̄ of degree d, then A(n) cannot satisfy a
recurrence over Q of order less than d. (McIntosh ’89)

For Apéry numbers: µ = (1 +
√

2)4.
For Franel numbers: µ = 2s. Not helpful!
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Solutions to the Franel number recurrences

Any telescoping recurrence for
n∑
k=0

(
n

k

)s
solved by A

(s)
j (n) if 0 6 2j < s.

(fine print: for large enough n)

THM
S-Zudilin

’21

A(s)(n, t) :=
n∑
k=0

(
n

k

)s  k∏
j=1

(
1− t

j

) n−k∏
j=1

(
1 +

t

j

)−s =
∑
j>0

A
(s)
j (n) t2j

1 Suppose: P (n,N)

(
n

k

)s
= b(n, k + 1)− b(n, k)

for a hypergeometric term b(n, k) = rat(n, k)
(
n
k

)s
.

2 P (n,N)

β−1∑
k=α

(
n

k − t

)s

= O(ts)α� 0 and β � n

= b(n, β − t)− b(n, α− t) b(n, t) entire for n� 0

since b(n, t) = rat(n, t)

(
n

t

)s

3 P (n,N)
n∑
k=0

(
n

k − t

)s
= O(ts) omitted terms are O(ts)

4 A(s)(n, t) =

(
πt

sin(πt)

)s n∑
k=0

(
n

k − t

)s
and so P (n,N)A(s)(n, t) = O(ts).

proof
outline
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lim
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A
(s)
j (n)

A(s)(n)
= [t2j ]

(
πt

sin(πt)

)s
∈ π2jQ>0
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• This follows from locally uniform convergence in t of

lim
n→∞

n∑
k=0

(
n

k

)s  k∏
j=1

(
1− t

j

) n−k∏
j=1

(
1 +

t

j

)−s
n∑
k=0

(
n

k

)s =

(
πt

sin(πt)

)s
.

• For large n and k ≈ n/2,

k∏
j=1

(
1− t

j

) n−k∏
j=1

(
1 +

t

j

)
≈
∞∏
j=1

(
1− t

j
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1 +

t

j
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=

sin(πt)
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(
πt

sin(πt)

)s
=
( ∞∑
j=1

(
2− 1

22j−2

)
ζ(2j)t2j

)s
= 1 + sζ(2) t2 +

s(5s+ 2)

4
ζ(4) t4 +O(t6)

lim
n→∞

B(s)(n)

A(s)(n)
=

1

s(s+ 1)
sζ(2) =

ζ(2)

s+ 1
B(s)(n) =

A
(s)
1 (n)

A
(s)
1 (1)

= 0, 1, . . .

A
(s)
1 (1) = s(s+ 1)

• s = 3, 4 numerically observed by Cusick (1979)
• s = 3 proved by Zagier (2009)
• s = 5 conjectured by Almkvist, van Straten, Zudilin (2008)
• s > 3 conjectured by Chamberland–S (2020)

EG
j = 1

lim
n→∞

C(s)(n)

A(s)(n)
=

12

s(s+ 1)(s+ 2)(s+ 3)

s(5s+ 2)

4
ζ(4) C(s)(n) =

A
(s)
2 (n)

A
(s)
2 (1)

= 0, 1, . . .

• s > 5 conjectured by Chamberland–S (2020)

EG
j = 2
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Telescoping version of Franel’s conjecture

Any telescoping recurrence for
n∑
k=0

(
n

k

)s
has order at least b s+1

2 c.
THM
S-Zudilin

’21

• This implies Franel’s conjecture on the exact order
if the minimal-order recurrence is telescoping. True at least for s 6 30.

• Order could be reduced by a different representation such as:
n∑
k=0

(
n

k

)3

=
n∑
k=0

(
n

k

)2(
2k

n

)

1 Any telescoping recurrence is solved by A
(s)
j (n) ∈ Q if 0 6 2j < s.

Here, and below, we assume that n is large enough.

2 The claim follows if these are linearly independent.

3 0 =

b s−1
2 c∑
j=0

λjA
(s)
j (n)

λj ∈ Q

=⇒ 0 = lim
n→∞

b s−1
2 c∑
j=0

λj
A

(s)
j (n)

A(s)(n)

=

b s−1
2 c∑
j=0

λjϕjπ
2j

ϕj ∈ Q×

4 Transcendence of π implies that all λj are zero.

proof
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1 Any telescoping recurrence is solved by A
(s)
j (n) ∈ Q if 0 6 2j < s.

Here, and below, we assume that n is large enough.

2 The claim follows if these are linearly independent.

3 0 =

b s−1
2 c∑
j=0

λjA
(s)
j (n)

λj ∈ Q

=⇒ 0 = lim
n→∞

b s−1
2 c∑
j=0

λj
A

(s)
j (n)

A(s)(n)

=

b s−1
2 c∑
j=0

λjϕjπ
2j

ϕj ∈ Q×

4 Transcendence of π implies that all λj are zero.

proof
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When does creative telescoping fall short?

Consider Sd(n) =
n∑
k=0

(−1)k
(
n

k

)(
dk

n

)
.

• Any telescoping recurrence P (n,N) has order > d− 1:

P (n,N)(−1)k
(
n

k

)(
dk

n

)
= b(n, k + 1)− b(n, k)

• However, Sd(n) = (−d)n satisfies NSd(n) + dSd(n) = 0.

EG
Paule,
Schorn

’95

• Open problem: When does CT fall short?
• Can these cases be “fixed” by a different hypergeometric representation?

Consider
2n∑
k=1

(−1)k
(

2n

k

)2(
2n

k − 1

)
= (−1)n

(3n)!

n!2(n− 1)!(2n+ 1)
.

• CT produces order 2 recurrence on summand a(n, k), but

• order 1 on a(n, k) + a(n, 2n− k + 1) =
2n− 2k + 1

2n− k + 1
a(n, k).

EG
Riese ’01

“creative
symmetriz-

ing”

“ Studying a huge number of practical applications one is tempted to conjecture
that Zeilberger’s algorithm always returns the recurrence with minimal order. ”Peter Paule, Markus Schorn, Journal of Symbolic Computation, 1995
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Sums of powers of binomials, their Apéry limits, and Franel’s suspicions Armin Straub
17 / 20



When does creative telescoping fall short?

Consider Sd(n) =
n∑
k=0

(−1)k
(
n

k

)(
dk

n

)
= (−d)n.

• Any telescoping recurrence P (n,N) has order > d− 1:

P (n,N)(−1)k
(
n

k

)(
dk

n

)
= b(n, k + 1)− b(n, k)

• However, Sd(n) = (−d)n satisfies NSd(n) + dSd(n) = 0.

EG
Paule,
Schorn

’95

• Open problem: When does CT fall short?
• Can these cases be “fixed” by a different hypergeometric representation?

Consider
2n∑
k=1

(−1)k
(

2n

k

)2(
2n

k − 1

)
= (−1)n

(3n)!

n!2(n− 1)!(2n+ 1)
.

• CT produces order 2 recurrence on summand a(n, k), but

• order 1 on a(n, k) + a(n, 2n− k + 1) =
2n− 2k + 1

2n− k + 1
a(n, k).

EG
Riese ’01

“creative
symmetriz-

ing”

“ Studying a huge number of practical applications one is tempted to conjecture
that Zeilberger’s algorithm always returns the recurrence with minimal order. ”Peter Paule, Markus Schorn, Journal of Symbolic Computation, 1995
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Modularity and Apéry limits

• Let A(n) =

n∑
k=0

(
n

k

)2(
2k

k

)
be Zagier’s sporadic sequence C. 1, 3, 15, 93, . . .

η(2τ)6η(3τ)

η(τ)3η(6τ)2

f(τ) = 1 + 3q + 3q2 + 3q3 +O(q4)

modular form

=
∑
n>0

A(n)

(
η(τ)4η(6τ)8

η(2τ)8η(3τ)4

)n
x(τ) = q − 4q2 + 10q3 +O(q4)

modular function

q = e2πiτ

THM
Zagier ’09
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)n
x(τ) = q − 4q2 + 10q3 +O(q4)

modular function

q = e2πiτ

THM
Zagier ’09

• Context:
f(τ) modular form of weight k
x(τ) modular function
y(x) such that y(x(τ)) = f(τ)

Then y(x) satisfies a linear differential equation Ly = 0 of order k + 1.

• Solutions to Ly = rat(x) are of the form y(x) times an Eichler integral of

h(τ) =

(
Dx(τ)

x(τ)

)k+1
rat(x(τ))

f(τ)
(a modular form of weight k + 2) (Yang ’07)

D = q d
dq

If
∑
n>1

cnq
n is a modular form of weight k + 2, then

∑
n>1

cn
nk+1

qn is an Eichler integral.
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x(τ) = q − 4q2 + 10q3 +O(q4)

modular function

q = e2πiτ

THM
Zagier ’09

• F (x) :=
∑
n>0

A(n)xn =⇒ F (x(τ)) = f(τ)

• G(x) :=
∑
n>0

B(n)xn =⇒ G(x(τ)) = f(τ)
∑
n>1

(−3n )

n2
qn

1 + qn

lim
n→∞

B(n)

A(n)

characteristic roots 1, 9

F (x), G(x) have radius of convergence R = 1
9 .

G(x)− LF (x) has radius of convergence R = 1 > 1
9 for L = lim

n→∞

B(n)

A(n)
.

= lim
x→ 1

9

G(x)

F (x)

= lim
τ→0

G(x(τ))

F (x(τ))

x(τ) = 1
9 for τ = 0 or q = 1

= lim
q→1

∑
n>1

(−3n )

n2
qn

1 + qn
=

1

2
L−3(2)
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A(n)xn =⇒ F (x(τ)) = f(τ)

• G(x) :=
∑
n>0

B(n)xn =⇒ G(x(τ)) = f(τ)
∑
n>1

(−3n )

n2
qn

1 + qn

lim
n→∞

B(n)

A(n)

characteristic roots 1, 9

F (x), G(x) have radius of convergence R = 1
9 .

G(x)− LF (x) has radius of convergence R = 1 > 1
9 for L = lim

n→∞

B(n)

A(n)
.

= lim
x→ 1

9

G(x)

F (x)
= lim

τ→0

G(x(τ))

F (x(τ))

x(τ) = 1
9 for τ = 0 or q = 1

= lim
q→1

∑
n>1

(−3n )

n2
qn

1 + qn
=

1

2
L−3(2)
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Conclusions and some open questions

Any telescoping recurrence for
n∑
k=0

(
n

k

)s
solved by A(s)

j (n) if 0 6 2j < s.
(fine print: for large enough n)

The Apéry limits are:

lim
n→∞

A
(s)
j (n)

A(s)(n)
= [t2j ]

(
πt

sin(πt)

)s
∈ π2jQ>0

Moreover, A(s)
j (n) with 0 6 2j < s are linearly independent, so that any

telescoping recurrence has order at least b s+1
2 c.

THM
S-Zudilin

’21

• Cusick ’89 and Stoll ’97 construct recurrences for Franel numbers.
Can these constructions produce telescoping recurrences?

• What can we learn from other families of binomial sums?
Also, it would be nice to simplify some of the technical steps in the arguments.

• Can we (uniformly) establish the conjectural Apéry limits for CY DE’s?

• How to explicitly construct the solutions guaranteed by Perron’s theorem?

• Can we explain when CT falls short? And algorithmically “fix” this issue?
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The Apéry limits are:

lim
n→∞

A
(s)
j (n)

A(s)(n)
= [t2j ]

(
πt

sin(πt)

)s
∈ π2jQ>0

Moreover, A(s)
j (n) with 0 6 2j < s are linearly independent, so that any

telescoping recurrence has order at least b s+1
2 c.

THM
S-Zudilin

’21

• Cusick ’89 and Stoll ’97 construct recurrences for Franel numbers.
Can these constructions produce telescoping recurrences?

• What can we learn from other families of binomial sums?
Also, it would be nice to simplify some of the technical steps in the arguments.

• Can we (uniformly) establish the conjectural Apéry limits for CY DE’s?
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• How to explicitly construct the solutions guaranteed by Perron’s theorem?

• Can we explain when CT falls short? And algorithmically “fix” this issue?
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks
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