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Some goals for today

• Lucas congruences are interesting.

• Diagonals and constant terms are useful ways of representing integer
sequences.

• Congruence automata are a powerful device for capturing the mod pr

values of sequences.

• Lucas congruences correspond to single-state (linear) congruence
automata.

• Larger automata can be translated into generalized Lucas congruences.

• (Apéry-like sequences are fascinating.)
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Lucas congruences(
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)(
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(
136

79

)
≡
(

3

2

)(
5

4

)(
2

1

)
= 3 · 5 · 2 ≡ 2 (mod 7)

LHS = 1009220746942993946271525627285911932800

EG

• Interesting sequences like the Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

satisfy such Lucas congruences as well:

A(n) ≡ A(n0)A(n1) · · ·A(nr) (mod p)THM
Gessel ’82
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Application: Primes not dividing Apéry numbers

There are infinitely many primes p such that p does not divide
any Apéry number A(n).
Such as p = 2, 3, 7, 13, 23, 29, 43, 47, . . .

CONJ
Rowland–
Yassawi

’15

• The values of Apéry numbers A(0), A(1), . . . , A(6) modulo 7
are 1, 5, 3, 3, 3, 5, 1.

• Hence, the Lucas congruences imply that 7 does not divide any
Apéry number.

EG
p = 7

The proportion of primes not dividing any Apéry number A(n)
is e−1/2 ≈ 60.65%.

CONJ
Malik–S

’16

• Heuristically, combine Lucas congruences,
• palindromic behavior of Apéry numbers, that is

A(n) ≡ A(p− 1− n) (mod p),

• and e−1/2 = lim
p→∞

(
1− 1

p

)(p+1)/2

.
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Diagonals

∑
n1,...,nd>0

multivariate series

a(n1, . . . , nd) x
n1
1 · · ·x

nd
d

∑
n>0

diagonal

a(n, . . . , n) tn

1

1− x− y

=
∞∑
k=0

(x+ y)k

diagonal:
∞∑
n=0

(
2n

n

)
tn =

1√
1− 4t

EG

The diagonal of a rational function is D-finite.

More generally, the diagonal of a D-finite function is D-finite.

F ∈ K[[x1, . . . , xd]] is D-finite if its partial derivatives span a finite-dimensional
vector space over K(x1, . . . , xd).

THM
Gessel,

Zeilberger,
Lipshitz
1981–88
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Diagonals: an example from positivity

All Taylor coefficients of the following function are positive:

1

1− (x+ y + z + w) + 2(yzw + xzw + xyw + xyz) + 4xyzw
.

CONJ
Kauers-

Zeilberger
2008

• Would imply conjectured positivity of Lewy–Askey function

1

(1− x)(1− y) + (1− x)(1− z) + . . .+ (1− z)(1− w)
.

Non-negativity proved by a very general result of Scott–Sokal (’14)

The diagonal coefficients of the Kauers–Zeilberger function are

D(n) =
n∑
k=0

(
n

k

)2(2k

n

)2

.

PROP
S-Zudilin

2015

• D(n) is an example of an Apéry-like sequence.

Can we conclude the conjectured positivity from the positivity
of D(n) together with the (easy) positivity of 1

1−(x+y+z)+2xyz?

Q
S-Zudilin

2015
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Characterizations of diagonals

Diagonals of rational functions

• F (x) = C-finite sequences

• F (x, y) = sequences with algebraic GF (Furstenberg ’67)

EG

To see the latter, express the diagonal as
1

2πi

∫
|x|=ε

F

(
x,
z

x

)
dx

x
.

Diagonals of rational functions
= (multiple) binomial sums

THM
Bostan,
Lairez,

Salvy ’17

Diagonals of rational functions over Q (⊆ known)

= globally bounded
(i.e. cdnan ∈ Z for c, d ∈ Z)

, D-finite sequences

CONJ
Christol

’90

• Open: example of a diagonal that requires more than
3 variables

Though we have numerous candidates.
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Automatic automata

If an integer sequence A(n) is the diagonal of F (x) ∈ Z(x),
then the reductions A(n) (mod pr) are p-automatic.

THM
Rowland,

Yassawi ’15

Constructive proof of results by Denef and Lipshitz ’87.
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1start

0

1

22

0, 1

2

0, 1, 2

0

2

1

2

0

1

1

2

0

C(35) = 3,116,285,494,907,301,262

≡ 1 (mod 3)

Instead via automaton:

35 = 1 0 2 2 in base 3

C( 2 )C(2) ≡ 2

C( 2 2 )C(8) ≡ 2

C( 0 2 2 ) ≡ 2

C( 1 0 2 2 )C(35) ≡ 1

EG
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Automatic automata

If an integer sequence A(n) is the diagonal of F (x) ∈ Z(x),
then the reductions A(n) (mod pr) are p-automatic.

THM
Rowland,

Yassawi ’15

Constructive proof of results by Denef and Lipshitz ’87.

Catalan numbers C(n) modulo 4:

1start 1 2 0
0

1

1

0

1

0

EG
Rowland,

Yassawi ’15

C(n) ≡


1, if n = 2a − 1 for some a > 0,

2, if n = 2b + 2a − 1 for some b > a > 0,

0, otherwise,

(mod 4).

THM
Eu, Liu,
Yeh ’08

C(n) 6≡ 3 (mod 4)COR
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Constant terms and p-schemes

• Rowland and Zeilberger ’14 construct congruence
automata for constant terms A(n) = ct[P (x)nQ(x)].

C(n) = ct[(x−1 + 2 + x)n(1− x)] Catalan numbers
n∑
k=0

(
n

k

)2(
n+ k

k

)
= ct

[
(x+ 1)(x+ y)(x+ y + 1)

xy

]n
Apéry numbers

EG

• Start with the state A0(n) = ct[P (x)nQ(x)]. All states mod pr.

• For each state Ai(n) = ct[Pi(x)nQi(x)] and each k ∈ {0, 1, . . . , p− 1},

Ai(pn+ k) = ct[ Pi(x)pn Qi(x)Pi(x)k ]

≡ ct[ Pj(x)n Qj(x)]

where the RHS is either a previous state or a new one. Repeat until done!

P (x)p
r ≡ P (xp)p

r−1
(mod pr) for any P ∈ Z[x±1].LEM

• Simplifying using this lemma, the Pi are P (x)p
s

with 0 6 s < r.
• The degree of the Qi can be bounded. Hence, this process terminates.

linear p-scheme:

≡
∑
j αj ct[Pj(x)nQj(x)]
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Linear vs. automatic schemes

• The Catalan numbers C(n) have the constant term expression:

C(n) =
1

n+ 1

(
2n

n

)

=

(
2n

n

)
−
(

2n

n− 1

)
= ct

[
(1 + x)2n

xn
(1− x)

]

1start

0

1

22

0, 1

2

0, 1, 2

0

2

1

2

0

1

1

2

0

A0(3n) = A1(n)
A0(3n+ 1) = A1(n)
A0(3n+ 2) = A2(n)

A1(3n) = A1(n)
A1(3n+ 1) = A3(n)
A1(3n+ 2) = 0

A2(3n) = A3(n)
A2(3n+ 1) = 0
A2(3n+ 2) = A2(n)

A3(3n) = A3(n)
A3(3n+ 1) = A1(n)
A3(3n+ 2) = 0

Initial conditions:
A0(0) = A1(0) = 1, A2(0) = A3(0) = 2

EG
mod 3

automatic
3-scheme

A0(3n) = A1(n)
A0(3n+ 1) = A1(n)
A0(3n+ 2) = A0(n) +A1(n)

A1(3n) = A1(n)
A1(3n+ 1) = 2A1(n)
A1(3n+ 2) = 0

Initial conditions: A0(0) = A1(0) = 1

EG
mod 3

linear
3-scheme
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Lucas congruences correspond to the simplest schemes

Suppose A(0) = 1.

A(n) satisfies Lucas congruences modulo p.
⇐⇒ A(n) (mod p) can be encoded by a single-state linear p-scheme.

PROP
Henningsen

S ’21

p-scheme with single state A0(n) ≡ A(n) (mod p):

A0(pn+ k) ≡ αkA0(n) (mod p) for all 0 6 k < p, n > 0

n = 0 : A0(k) ≡ αk

A0(pn+ k) ≡ A0(k)A0(n) (mod p)

proof

• This suggests generalizations such as:

A(n) satisfies Lucas congruences of order k modulo p.
⇐⇒ A(n) (mod p) can be encoded by a linear p-scheme with k states.
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A(n) satisfies Lucas congruences of order k modulo p.
⇐⇒ A(n) (mod p) can be encoded by a linear p-scheme with k states.
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Generalized Lucas congruences

Let A(n) = ct[P (x, y)nQ(x, y)] where P,Q ∈ Z[x±1, y±1] with

P (x, y) =
∑

(i,j)∈{−1,0,1}2
ai,jx

iyj , Q(x, y) = α+ βx+ γy + δxy.

Then, for any n ∈ Z>0 and k ∈ {0, 1, . . . , p− 1},

A(pn+ k) ≡ B(n) A(k) +

{
0, if k < p− 1,

Ã(n), if k = p− 1,
(mod p).

THM
Henningsen

S ’21

Here, B(n) = ct[P (x, y)n] and Ã(n) = ct[P (x, y)nQ̃(x, y)] with:

• Q̃(x, y) = Q(σxx, σyy)− α+ δ
(
a1,0
2a1,1

(1− σx)x+
a0,1
2a1,1

(1− σy)y + (1− σxσy)xy
)

• σx =

(
a21,0 − 4a1,−1a1,1

p

)
∈ {0,±1} p 6= 2, p - a1,1

• σy =

(
a20,1 − 4a−1,1a1,1

p

)
∈ {0,±1}

If Q = 1, these reduce to the
usual Lucas congruences.
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Application: Catalan numbers

If p− 1, . . . , p− 1

s

, n0, n1, . . . , nr is the p-adic expansion of n, then

C(n) ≡ δ(n0, s)C(n0)

(
2n1
n1

)
· · ·
(

2nr
nr

)
(mod p)

where δ(n0, s) =

{
1, if s = 0,
−(2n0 + 1), if s > 1.

COR
Henningsen

S ’21

C(n) ≡
{

(−1)τ(n+1), if n+ 1 ∈ T ,
0, otherwise,

(mod 3),

where m = m0 + 3m1 + 32m2 + . . . ∈ T iff m1,m2, . . . ∈ {0, 1}.
τ(m) = (# of m1,m2, . . . equal to 1)

EG
Deutsch,
Sagan ’06

C(n) ≡
{

2λ(n), if n 6∈ Z,
0, otherwise,

(mod 5),

where n ∈ Z iff n0 = 3, or (n0 = 2, s > 1), or one of n1, n2, . . . ∈ {3, 4}.

λ(n) = (# of n1, n2, . . . equal to 1) +

{
1, if n0 = 2, or if both n0 = 1 and s > 1,

2, if n0 = 0 and s > 1.

EG
Henningsen

S ’21
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Catalan numbers: forbidden residues

C(n) 6≡ 3 (mod 4) Eu–Liu–Yeh ’08

C(n) 6≡ 9 (mod 16) Liu–Yeh ’10

C(n) 6≡ 17, 21, 26 (mod 32)

C(n) 6≡ 10, 13, 33, 37 (mod 64)

EG
Rowland,

Yassawi ’15

Let P (r) be the proportion of residues not attained by C(n) mod 2r.

Does P (r)→ 1 as r →∞?

Q
Rowland,

Yassawi ’15

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P (r) 0 .25 .25 .31 .41 .47 .54 .59 .65 .69 .73 .76 .79 .82

N(r) 0 1 2 5 13 30 69 152 332 710 1502 3133 6502 13394

A(r) 0 1 0 1 3 4 9 14 28 46 82 129 236 390

N(r) = # residues not attained mod 2r

A(r) = # additional residues not attained mod 2r = N(r)− 2N(r − 1)
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Catalan numbers mod 10

C(n) 6≡ 3 (mod 10) for all n > 0.

C(n) 6≡ 1, 7, 9 (mod 10) for sufficiently large n.

CONJ
Bostan

’15

If true, the last digit of any sufficiently large odd Catalan number is always 5. (n > 255?)

• C(n) is odd iff n = 2k − 1 for some k.

• For such n, the generalized Lucas congruences mod 5 simplify to:
(since the first digit n0 cannot be 4)

C(n) ≡
{

2λ(n), if n0, n1, . . . 6∈ {3, 4},
0, otherwise,

(mod 5),

where λ(n) = (# of n0 − 1, n1, n2, . . . equal to 1).
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A victory for the French peasant. . . ∗

• The Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

satisfy

(n+ 1)3un+1 = (2n+ 1)(17n2 + 17n+ 5)un − n3un−1.

ζ(3) =
∞∑
n=1

1

n3
is irrational.

THM
Apéry ’78

∗ Someone’s “sour comment” after Henri Cohen’s report on Apéry’s proof at the ’78 ICM in Helsinki.
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n3
is irrational.

THM
Apéry ’78

The same recurrence is satisfied by the “near”-integers

B(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2
 n∑
j=1

1

j3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
 .

Then, B(n)
A(n) → ζ(3). But too fast for ζ(3) to be rational.

proof

∗ Someone’s “sour comment” after Henri Cohen’s report on Apéry’s proof at the ’78 ICM in Helsinki.

Lucas congruences and congruence schemes Armin Straub
16 / 23



A victory for the French peasant. . . ∗
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is irrational.

THM
Apéry ’78

“After a few days of fruitless effort the specific problem was
mentioned to Don Zagier (Bonn), and with irritating speed
he showed that indeed the sequence satisfies the recurrence.
Alfred van der Poorten — A proof that Euler missed. . . (1979) ”

Nowadays, there are excellent implementations of this creative telescoping, including:
• HolonomicFunctions by Koutschan (Mathematica)
• Sigma by Schneider (Mathematica)
• ore algebra by Kauers, Jaroschek, Johansson, Mezzarobba (Sage)
(These are just the ones I use on a regular basis. . .

∗ Someone’s “sour comment” after Henri Cohen’s report on Apéry’s proof at the ’78 ICM in Helsinki.
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Zagier’s search and Apéry-like numbers

• Recurrence for Apéry numbers is the case (a, b, c) = (17, 5, 1) of

(n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − cn3un−1.

Are there other tuples (a, b, c) for which the solution defined by
u−1 = 0, u0 = 1 is integral?

Q
Beukers,

Zagier

• Essentially, only 14 tuples (a, b, c) found. (Almkvist–Zudilin)

• 4 hypergeometric and 4 Legendrian solutions (with generating functions

3F2

( 1
2 , α, 1− α

1, 1

∣∣∣∣4Cαz) , 1

1− Cαz
2F1

(
α, 1− α

1

∣∣∣∣ −Cαz1− Cαz

)2

,

with α = 1
2 ,

1
3 ,

1
4 ,

1
6 and Cα = 24, 33, 26, 24 · 33)

• 6 sporadic solutions

• Similar (and intertwined) story for:
• (n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1 (Beukers, Zagier)

• (n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − n(cn2 + d)un−1 (Cooper)
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The six sporadic Apéry-like numbers

(a, b, c) A(n)

(17, 5, 1) Apéry numbers

∑
k

(
n

k

)2(n+ k

n

)2

(12, 4, 16) Kauers–Zeilberger diagonal

∑
k

(
n

k

)2(2k

n

)2

(10, 4, 64) Domb numbers

∑
k

(
n

k

)2(2k

k

)(
2(n− k)

n− k

)

(7, 3, 81) Almkvist–Zudilin numbers

∑
k

(−1)k3n−3k
(
n

3k

)(
n+ k

n

)
(3k)!

k!3

(11, 5, 125)
∑
k

(−1)k
(
n

k

)3(4n− 5k

3n

)

(9, 3,−27)
∑
k,l

(
n

k

)2(n
l

)(
k

l

)(
k + l

n

)

(n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − cn3un−1
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Apéry numbers have remarkable properties

η7(2τ)η7(3τ)

η5(τ)η5(6τ)

1 + 5q + 13q2 + 23q3 +O(q4)

modular form

=
∑
n>0

A(n)

(
η12(τ)η12(6τ)

η12(2τ)η12(3τ)

)n
q − 12q2 + 66q3 +O(q4)

modular function

q = e2πiτ

THM
Beukers

’87

A(n) ≡
ni are the p-adic digits of n

A(n0)A(n1) · · ·A(nr) (mod p)THM
Gessel ’82

A(prm) ≡ A(pr−1m) (mod p3r)THM
Coster ’88

A
(
p− 1

2

)
≡

f(τ) =
∑
n>1

c(n)qn = η(2τ)4η(4τ)4 ∈ S4(Γ0(8))

c(p) (mod p2)THM
Ahlgren–
Ono ’00

A
(
−1

2

)
=

16

π2
L(f, 2)THM

Zagier ’16

• These extend to all other known Apéry-like numbers!!???
! = proven
? = partially known
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! = proven
? = partially known
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Approaches to proving Lucas congruences

• From suitable expressions as a binomial sum. Gessel ’82, McIntosh ’92

Apéry numbers:
∑
k

(
n

k

)2(
n+ k

n

)2

Sequence (η):
∑
k

(−1)k
(
n

k

)3(
4n− 5k

3n

)

• From suitable constant term expressions. Samol–van Straten ’09, Mellit–Vlasenko ’16

A(n) = ct[P (x)n] satisfies the Lucas congruences for any p, if the
Newton polytope of P ∈ Z[x±1] has the origin as its only interior
integral point. (In fact, we get the stronger Dwork congruences.)

THM
Samol,

van
Straten

’09

P =
(x+ y)(z + 1)(x+ y + z)(y + z + 1)

xyz

(
1− 1

xy(1 + z)5

)
(1 + x)(1 + y)(1 + z)4

z3

• From suitable diagonal expressions. Rowland–Yassawi ’15

For instance, diagonals of 1/Q(x) for Q(x) ∈ Z[x] with Q(x) linear in
each variable and Q(0) = 1.
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Challenge: finding constant term expressions

All of the 6 + 6 + 3 known sporadic sequences satisfy
Lucas congruences modulo every prime.

THM
Malik–S

’16

• Proof using binomial sums and McIntosh’s technique for all but 2 sequences.
• Proof is long and technical for the sequences (η) and s18.

Each sporadic sequence, except possibly (η), can be
expressed as ct[P (x)n] with the Newton polytope of
P ∈ Z[x±1] having the origin as its only interior integral point.

THM
Gorodetsky

’21

(η):
(zx+ xy − yz − x− 1)(xy + yz − zx− y − 1)(yz + zx− xy − z − 1)

xyz

EG
Gorodetsky

’21

(1, 0, 0), (1, 1, 0) and their permutations are interior points.

Algorithmic tools to find useful constant term expressions?Q
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Some goals for today

• Lucas congruences are interesting.

• Diagonals and constant terms are useful ways of representing integer
sequences.

• Congruence automata are a powerful device for capturing the mod pr

values of sequences.

• Lucas congruences correspond to single-state (linear) congruence
automata.

• Larger automata can be translated into generalized Lucas congruences.

• (Apéry-like sequences are fascinating.)
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

J. Henningsen, A. Straub
Generalized Lucas congruences and linear p-schemes
arXiv:2111.08641
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