
Notes for Lecture 1 Wed, 8/21/2024

Review: Our zoo of functions

� polynomials

x2, x3, 7x4¡ x+2, :::

� rational functions
1

x+1
, x

2¡ 2x¡ 3
x3+7

, :::

� power functions

x2, x1/2= x
p

, x¡1/2= 1

x
p , :::

� exponentials

2x, ex, :::

� logarithms

ln(x)= loge(x), log2(x), :::

� trigonometric functions

sin(x), cos(x), tan(x)= sin(x)
cos (x) , :::

� inverse trig functions

arcsin(x), arccos(x), arctan(x), :::

Review: Computing derivatives

Given a function y(x), we learned in Calculus I that its derivative

y 0(x)= dy
dx

= lim
�x!0

�y
�x

(where �y= y(x+�x)¡ y(x)) has the following two important characterizations:

� y 0(x) is the slope of the tangent line of the graph of y(x) at x, and

� y 0(x) is the rate of change of y(x) at x.

Comment. Derivatives were introduced in the late 1600s by Newton and Leibniz who later each claimed priority
in laying the foundations for calculus. Certainly both of them contributed mightily to those foundations.

Moreover, we learned simple rules to compute the derivative of functions:

� (sum rule) d

dx
[f(x)+ g(x)] = f 0(x)+ g 0(x)

� (product rule) d

dx
[f(x)g(x)] = f 0(x)g(x)+ f(x)g 0(x)

� (chain rule) d

dx
[f(g(x))] = f 0(g(x))g 0(x)
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Comment. If we write t= g(x) and y= f(t), then the chain rule takes the form dy

dx
=
dy

dt
� dt
dx

.

In other words, the chain rule expresses the fact that we can treat dy
dx

(which initially is just a notation
for y0(x)) as an honest fraction.

� (basic functions) d

dx
xr= rxr¡1,

d

dx
ex= ex, d

dx
ln(x)= 1

x
,

d

dx
sin(x)= cos(x), d

dx
cos(x)=¡sin(x)

These rules are enough to compute the derivative of any function that we can build from the basic
functions using algebraic operations and composition. On the other hand, reversing the operation
of differentiation (i.e. computing antiderivatives) is much more difficult.
In particular, there exist simple functions (such as ex

2
) whose antiderivative cannot be expressed in terms of the

basic functions above.

Example 1. Derive the quotient rule from the rules above.

Solution. We write f(x)

g(x)
= f(x) � 1

g(x)
and apply the product rule to get

d
dx

f(x) � 1
g(x)

= f 0(x)
1

g(x)
+ f(x)

d
dx

1
g(x)

:

By the chain rule combined with d

dx

1

x
=¡ 1

x2
, we have d

dx

1

g(x)
=¡ 1

g(x)2
g 0(x). Using this in the previous formula,

d
dx

f(x) � 1
g(x)

= f 0(x)
1

g(x)
¡ f(x)

1

g(x)2
g 0(x)=

f 0(x)
g(x)

¡ f(x)g0(x)
g(x)2

:

Putting the final two fractions on a common denominator, we obtain the familiar quotient rule

d
dx

f(x)
g(x)

=
f 0(x)g(x)¡ f(x)g 0(x)

g(x)2
:

Example 2. Compute the following derivatives:

(a) d

dx
(5x3+7x2+2)

(b) d

dx
sin(5x3+7x2+2)

(c) d

dx
(x3+2x)sin(5x3+7x2+2)

Solution.

(a) d

dx
(5x3+7x2+2)= 15x2+ 14x

(b) d

dx
sin(5x3+7x2+2)= (15x2+ 14x) cos(5x3+7x2+2)

(c) d

dx
(x3+2x) sin(5x3+7x2+2)

= (3x2+2) sin(5x3+7x2+2)+ (x3+2x)(15x2+ 14x) cos(5x3+7x2+2)

Example 3. Find d

dx
tan(x) using tan(x)= sin(x)

cos(x) and the quotient rule.

Example 4. What is d

dx
ln(x)?

Why? Can you explain why this is the case?
(One way to see this is to recall that eln(x)=x and to differentiate both sides. What do you conclude?)
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Review: Integration and areas

If f(x)> 0 for x2 [a; b], then Z
a

b

f(x)dx

is defined as the area enclosed by the graph of f(x) and the x-axis between x= a and x= b.

Can you explain how the integral
R
a
b
f(x) dx is constructed from sums

P
f(x)�x?

(Here, we are summing over rectangles of width�x between a and b; at position x their height is roughly f(x).)

Comment. � is a capital sigma, and just means �sum�. Don't worry about it for now. We will see it again later.

Review: Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus connects the two operations

(a) differentiation and

(b) integration,

which, at first glance, look like they might be of a rather different nature. Roughly, it shows that
these two operations are inverses of each other.

Theorem 5. (Fundamental Theorem of Calculus, part 2)Z
a

b

f(x) dx=F (b)¡F (a);

if F (x) is an antiderivative of f(x).

The �first part� of the Fundamental Theorem of Calculus is the statement that

d
dx

Z
a

x

f(t) dt= f(x):

Modulo details (such as whether f(x) is continuous or differentiable), can you conclude this �first part� from the
�second part� above?
(Hint: in the �second part�, replace b by x and differentiate both sides with respect to x.)

Example 6. Compute
Z
1

2

xdx in two ways: first, making a sketch and using the definition as an

area; then, using the Fundamental Theorem of Calculus.
Solution.

(a) Make a sketch! The area in question consists of a 1� 1 square (area 1) with exactly half a 1� 1 square
(area 1/2) on top. Hence, the total area is 1+ 1

2
=
3

2
.

(b)
Z
1

2

xdx=

�
1
2
x2
�
1

2

=
1
2
� 22¡ 1

2
� 12= 4

2
¡ 1
2
=
3
2

Example 7.
Z
0

�

sin(x) dx=

Why is
Z
0

2�

sin(x) dx=0? Explain geometrically in terms of areas.
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Review: Antiderivatives (or indefinite integrals)

Definition 8. If f(x)=F 0(x) then we say that F (x) is an antiderivative of f(x).

We write:
Z
f(x)dx=F (x)+C

This is also called the indefinite integral of f(x).
Comment. The notation using the integral sign makes sense because of the Fundamental Theorem of Calculus.

Example 9.
Z
xdx= 1

2
x2+C

Example 10.
Z
xadx= 1

a+1
xa+1+C

Comment. Note that the case a=¡1 is special. What happens in that case?

Example 11.
Z
1¡x
x3

dx=
Z
(x¡3¡x¡2)dx=¡1

2
x¡2+x¡1+C

Example 12.
Z
x x
p

dx=
Z
x3/2dx= 2

5
x5/2+C

Substitution

The following is a first example for which the antiderivative is not so readily obtained by reversing
basic rules of differentiation.

Example 13. Determine
Z
x x2+1
p

dx by substituting u=x2+1.

Solution. We need to substitute all occurences of x in the integral, including the dx.
To substitute the latter, note that if u=x2+1 then the derivative with respect to x is

du
dx

=2x:

Solving for dx, we find dx= 1

2x
du.

Substituting in the integral, we therefore findZ
x x2+1
p

dx =

Z
x u
p 1

2x
du=

1
2

Z
u

p
du=

1
2
� 2
3
u3/2+C =

1
3
(x2+1)3/2+C:

Note how in the final step, we substituted back u= x2+1 to get the desired antiderivative in terms of x.

Comment. We could have been slightly more efficient by directly substituting xdx= 1

2
du.
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