
Notes for Lecture 13 Fri, 9/20/2024

Hyperbolic functions

The hyperbolic cosine and sine are cosh(x)= ex+ e¡x

2
and sinh(x)= ex¡ e¡x

2
.

The remaining hyperbolic trigonometric functions are built from these two as expected.

For instance, tanh(x)= sinh(x)
cosh(x)

.
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We will later see that cosh(x) = cos(ix) and sinh(x) =¡i sin(ix). For now observe and verify
the following properties that reflect similar properties of cos and sin:

� cosh0(x)= sinh(x)
sinh0(x)= cosh(x)

� cosh(¡x)= cosh(x) (that is, cosh is an even function)

sinh(¡x)=¡sinh(x) (that is, sinh is an odd function)

� cosh2(x)¡ sinh2(x)=1
This property explains the name hyperbolic functions: the points (x; y) = (cosh(t); sinh(t)) produce
the unit hyperbola x2 ¡ y2 = 1. This is analogous to how cosine and sine parametrize the circle: in
that case, the points (x; y)= (cos(t); sin(t)) produce the unit circle x2+ y2=1.
Comment. Circles and hyperbolas are conic sections (as are ellipses and parabolas).

Comment. Plot the unit hyperbola. Then compare the graph to y= 1

x
. (This is a hyperbola, too!)

Comment. Hyperbolic geometry plays an important role, for instance, in special relativity:
https://en.wikipedia.org/wiki/Hyperbolic_geometry

� ex= cosh(x)+ sinh(x)
This is a �cheap� version of Euler's identity eix= cos(x)+ i sin(x), which we will look at soon.
In both cases, ex and eix are broken up into their even part and odd part.

Example 74. Rewrite in terms of exponentials and simplify as much as possible:

(a) 4sinh(lnx)

(b) cosh(3x)¡ sinh(3x)
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Solution.

(a) 4sinh(lnx)= 4 � e
lnx¡ e¡lnx

2
=2

�
x¡ 1

x

�

(b) cosh(3x)¡ sinh(3x)= e3x+ e¡3x

2
¡ e3x¡ e¡3x

2
= e¡3x

Example 75. Determine the following:

(a)
d
dx
4cosh(3x)

(b)
Z
4cosh(3x)dx

(c)
d
dx

ln(sinh(x2+3x))

Solution.

(a) d
dx
4cosh(3x)= 12sinh(3x)

(b)
Z
4cosh(3x)dx= 4

3
sinh(3x)+C

(c) d
dx

ln(sinh(x2+3x))=
1

sinh(x2+3x)
� cosh(x2+3x) � 2x

Since the hyperbolic functions are defined in terms of the exponential function, it is not surprising
that their inverse functions can be expressed in terms of logarithms. We leave it at the following
example.

Example 76. Express sinh¡1 in terms of logarithms.

Solution. We start with y= sinh(x)= ex¡ e¡x
2

and need to solve for x.

Write u= ex so that the equation becomes 2y=u¡ 1

u
.

Multiplying with u and rearranging, we obtain u2¡ 2yu¡ 1=0 which is a quadratic equation in u.

Using the quadratic formula, we find u= 2y� 4y2+4
p
2

= y � y2+1
p

. Note that u= ex> 0 so that we have
to choose the + sign here.

Since u= ex, this implies x= ln(u)= ln
�
y+ y2+1

p �
.

In summary, we have found that sinh¡1(x)= ln
�
x+ x2+1

p �
.

Comment. It follows from sinh(x) = ¡i sin(ix) that arcsin = sin¡1 can be similarly expressed in terms of
logarithms. However, we will now have the imaginary i in that formula.

Example 77. Find the length of the curve y= coshx from x=¡2 to x=2.
Solution. The length isZ

¡2

2

1+

�
dy
dx

�
2

s
dx =

Z
¡2

2

1+ sinh2(x)
q

dx=

Z
¡2

2

cosh(x)dx

=
h
sinh(x)

i
¡2

2
= sinh(2)¡ sinh(¡2)= 2sinh(2)= e2¡ e¡2� 7.254:

Here, we used that 1+ sinh2(x)= cosh2(x) as we had observed earlier (in the form cosh2(x)¡ sinh2(x)= 1).

Also note that cosh(x)> 0 so that we get cosh2(x)
q

=+cosh(x).
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