Notes for Lecture 14 Mon, 9/23/2024

Spotlight on the exponential function

‘ Euler’s constant, the natural base

Euler's constant e = 2.7182818284590452... is unavoidable in Calculus. For instance, starting
with only division (which is all we need to define the function 1 /), we obtain
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Likewise, e” is the only exponential whose derivative is itself. More professionally speaking, we
have the following characterization of the exponential function:

| (exponential function) e” is the unique solution to the IVP y'=1y, y(0)=1. |

Comment. Note that, for instance, —2” In(2) 2%. (This follows from 2% = !?(2") = ¢2In(2)

Since In =log, this means that we cannot avoid the natural base e = 2.718 even if we try to use another base.

The following is a preview of a series (infinite sum):

(preview of Taylor series) From the IVP above, it follows that e* =1+ +2—!2+ z—? + ...

This is the Taylor series for e” at x =0. More on these later!

Important note. We can indeed construct this infinite sum directly from y’ = y and y(0) = 1. To see this,

d z*  2?

observe how each term, when differentiated, produces the term before it. For instance, I 3T = o

Example 78. Suppose we have capital 1 and that, annually, we are receiving 1 =100% interest.
How much capital do we have at the end of a year, if% interest is paid n times a year?

[For instance, n = 12 if we receive monthly interest payments.]

Solution. At the end of the year, we have (1 + %)n

For instance. Here are a few values spelled out:

n
n=1: <1+1>
n
1 n
n=4: <1+> =2.4414...
n
1 n
n=12: <1+> =2.6130...
n
1 n
n = 100: <1+n> =2.7048...
1 n
n = 365: <1+n> =2.7145...
1 n
n = 1000: <1+> =2.7169...

n — 00: < +— > —e=2.71828...

It is natural to wonder what happens if interest payments are made more and more frequently. As the entry for
n — 0o shows, if we keep increasing n, then we will get closer and closer to e = 2.7182818284590452... in our
bank account after one year.

o 1\" . ,
Challenge. Can you evaluate the limit lim (1 +n> using your Calculus | skills?

n—oo
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| Euler’s identity

Let's recall some basic facts about complex numbers:
e Every complex number can be written as z =x + 1y with real x, y.

e Here, the imaginary unit i is characterized by solving 22 = —1.
Important observation. The same equation is solved by —¢. This means that, algebraically, we cannot
distinguish between +t and —1.

e The conjugate of z=z+iyis Z=x —iy.
Important comment. Since we cannot algebraically distinguish between 47, we also cannot distinguish
between z and z. That's the reason why, in problems involving only real numbers, if a complex number
z =z + iy shows up, then its conjugate Z =z — iy has to show up in the same manner. With that in
mind, have another look at the examples below.

e The real part of z=x+iy is x and we write Re(z) =z.

Likewise the imaginary part is Im(z) = y.

Observe that Re(z) = %(z + z) as well as Im(z) = 2%(2 —Z).

| Theorem 79. (Euler’s identity) ¢’® = cos(z) + i sin(z)

Proof. Observe that both sides are the (unique) solution to the IVP y' =iy, y(0) =1.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.] O

On lots of T-shirts. In particular, with z = 7, we get ore™4+1=0 (which connects the five
fundamental constants).

Proof. Observe that both sides are the (unique) solution to the IVP y' =1y, y(0)=1.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.] O

Comment. It follows that cos(z) = Re(e!?) = %(em +e7 %) and sin(x) = Im(e’®) = %(e”’ —e7iT),

In particular, we see from here that cos(x) = cosh(iz) and i sin(x) = sinh(iz) (or, equivalently, cosh(x) =
cos(ix) and sinh(x) = —¢sin(ix)).

. . . . . . 1 —cos(2

Example 80. Where do trig identities like sin(2x) = 2cos(z)sin(z) or sin?(x) :$ (and
infinitely many others you have never heard of!) come from?
Short answer: they all come from the simple exponential law e* Y = ¢e%e¥,

Let us illustrate this in the simple case (e*)? = e2*. Observe that

€2 = cos(2x) +isin(2x)
e'®e’® = [cos(x) +isin(z)]? = cos?(x) — sin?(z) 4 2i cos(x)sin(z).
Comparing imaginary parts (the “stuff with an "), we conclude that sin(2z) = 2cos(z)sin(z).
Likewise, comparing real parts, we read off cos(2z) = cos?(x) — sin?(x).
(Use cos?(z) +sin?(z) =1 to derive sin?(z) :17%\(2” from the last equation.)

Challenge. Can you find a triple-angle trig identity for cos(3x) and sin(3x) using (e%)3 = e3%?
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Example 81. Which trig identity hides behind e*(*+¥) = ¢izeiv?

Solution. We observe that

ei(w"ry) = COS(CU + y) +1 Sil’l($ + y)

e'®el¥ = [cos(x) +isin(x)][cos(y) + isin(y)]
cos(z)cos(y) — sin(x)sin(y) + i(cos(z)sin(y) + sin(x)cos(y)).

Comparing real and imaginary parts, we conclude that
e cos(z+ y) =cos(z)cos(y) — sin(z)sin(y) and

e sin(x + y) = cos(z)sin(y) + sin(x)cos(y).

Example 82. Which trig identity hides behind '@ e~ =17
Solution. Note that
e e = [cos(x) +isin(x)]|[cos(—x) + i sin(—z)] = [cos(z) + i sin(z)][cos(x) — i sin(x)]

= cos2z + sin?x.

Hence, e*® e~%* =1 translates into Pythagoras’ identity cos?z + sin’z = 1.
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