Review. Recall that dg(x) = g'(x)dx (since $\frac{d}{dx}g(x) = g'(x)$). Integration by parts therefore is often written as

$$\int f(x)dg(x) = f(x)g(x) - \int g(x)df(x), \quad \text{or} \quad \int udv = uv - \int vdu.$$

In the latter short form, we have set u = f(x) and v = g(x).

Trigonometric integrals

The following example illustrates that we somtimes have choices when integrating:

Example 91.
$$\int \sin(x)\cos(x) dx$$

Solution. (integration by parts) Integrating by parts with $f(x) = \sin(x)$, $g'(x) = \cos(x)$, $g(x) = \sin(x)$, we get

$$\int \sin(x)\cos(x) dx = \sin^2(x) - \int \cos(x)\sin(x) dx,$$

from which we conclude that $\int \sin(x)\cos(x) dx = \frac{1}{2}\sin^2(x) + C$.

Solution. (substitution) Substitute $u = \sin(x)$, because $du = \cos(x) dx$, to get

$$\int \sin(x)\cos(x) \, dx = \int u \, du = \frac{1}{2}u^2 + C = \frac{1}{2}\sin^2(x) + C.$$

Solution. (trig identity) Since $\sin(2x) = 2\cos(x)\sin(x)$, we have

$$\int \sin(x)\cos(x) \, dx = \frac{1}{2} \int \sin(2x) dx = -\frac{1}{4}\cos(2x) + C.$$

Important comment. Note that $\frac{1}{2}\sin^2(x)\neq -\frac{1}{4}\cos(2x)$ (for instance, plug in x=0 to see that). However, the two functions are indeed equal up to a constant (namely, $\frac{1}{2}\sin^2(x)=-\frac{1}{4}\cos(2x)+\frac{1}{4}$) as we can see from the trig identity $\sin^2(x)=\frac{1-\cos(2x)}{2}$.

Example 92.
$$\int \sin^m(x)\cos^3(x) dx$$
 (with $m \neq -1, -3$)

Solution. We substitute $u = \sin(x)$, because $du = \cos(x) dx$, to get

$$\int \sin^{m}(x)\cos^{3}(x) dx = \int u^{m}\cos^{2}(x) du = \int u^{m}(1 - \sin^{2}(x)) du = \int u^{m}(1 - u^{2}) du$$
$$= \frac{u^{m+1}}{m+1} - \frac{u^{m+3}}{m+3} + C = \frac{\sin^{m+1}(x)}{m+1} - \frac{\sin^{m+3}(x)}{m+3} + C.$$

The strategy in the previous problem works whenever we have an odd power of cosine:

Example 93. Describe how we can determine $\int \sin^m(x)\cos^{2k+1}(x) dx$.

Solution. Again, we substitute $u = \sin(x)$, because $du = \cos(x) dx$, to get

$$\int \sin^m(x)\cos^{2k+1}(x) \, \mathrm{d}x = \int u^m \cos^{2k}(x) \, \mathrm{d}u = \int u^m (1 - \sin^2(x))^k \, \mathrm{d}u = \int u^m (1 - u^2)^k \, \mathrm{d}u.$$

For a given integer $k \ge 0$, we can now multiply out the term $(1 - u^2)^k$. Each resulting term (after multiplying with u^m) can then be integrated using the power rule (as in the previous example).

Extrapolating this strategy, we can integrate the following products of trigonometric function:

- $\int \sin^m(x)\cos^n(x) dx$, with n=2k+1 odd, can be evaluated by substituting $u=\sin(x)$. See previous example!
- $\int \sin^m(x)\cos^n(x) dx$, with m odd, can be likewise evaluated by substituting $u = \cos(x)$.
- $\int \sin^m(x)\cos^n(x) dx$, with both m, n even, can be reduced via

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}, \quad \cos^2(x) = \frac{1 + \cos(2x)}{2}.$$

[Then, multiply out the integrand. The resulting integrals have smaller exponents, and we (recursively) apply our strategy to each of them (if the 2x bothers you, substitute u = 2x).]

Example 94. Determine $\int \cos^2(x) dx$.

Solution. (trig identity) Since both exponents are even (the exponent of $\sin(x)$ is 0, which is even), we use the trig identity $\cos^2(x) = \frac{1 + \cos(2x)}{2}$:

$$\int \cos^2(x) dx = \int \frac{1 + \cos(2x)}{2} dx = \frac{1}{2}x + \frac{1}{4}\sin(2x) + C.$$

Solution. (integration by parts—only for practice) We choose $f(x) = \cos(x)$ and $g'(x) = \cos(x)$ (so that $g(x) = \sin(x)$) to get

$$\int \cos^2(x) dx = \cos(x)\sin(x) + \int \sin^2(x) dx = \cos(x)\sin(x) + \int (1 - \cos^2(x)) dx.$$

Note that our integral appears on both sides. Solving for it, we conclude that

$$\int \cos^2(x) dx = \frac{1}{2} (\cos(x)\sin(x) + x) + C.$$

Our final answer looks different at first glance but is the same because $\sin(2x) = 2\cos(x)\sin(x)$.

Example 95. Determine $\int \cos^2(x)\sin^2(x)dx$.

Solution. Since both exponents are even, we use the trig identities $\cos^2(x) = \frac{1 + \cos(2x)}{2}$, $\sin^2(x) = \frac{1 - \cos(2x)}{2}$:

$$\int \cos^2(x) \sin^2(x) \mathrm{d}x \ = \ \int \frac{1 + \cos(2x)}{2} \cdot \frac{1 - \cos(2x)}{2} \mathrm{d}x = \frac{1}{4} \int (1 - \cos^2(2x)) \mathrm{d}x = \frac{1}{4} x - \frac{1}{4} \int \cos^2(2x) \mathrm{d}x.$$

We now use $\cos^2(x) = \frac{1+\cos(2x)}{2}$ again (or we could use the previous example) to find

$$\int \cos^2(2x) dx = \int \frac{1 + \cos(4x)}{2} dx = \frac{1}{2}x + \frac{1}{8}\sin(4x) + B.$$

Combined, we have (we rename the constant of integration to absorb the factor of -1/4)

$$\int \cos^2(x) \sin^2(x) \mathrm{d}x = \frac{1}{4}x - \frac{1}{4} \left(\frac{1}{2}x + \frac{1}{8} \sin(4x) \right) + C = \frac{1}{8}x - \frac{1}{32} \sin(4x) + C.$$