
Notes for Lecture 17 Wed, 10/2/2024

Review. Recall that dg(x) = g 0(x)dx (since d

dx
g(x) = g 0(x)). Integration by parts therefore is

often written asZ
f(x)dg(x)= f(x)g(x)¡

Z
g(x)df(x); or

Z
udv=uv¡

Z
vdu:

In the latter short form, we have set u= f(x) and v= g(x).

Trigonometric integrals

The following example illustrates that we somtimes have choices when integrating:

Example 91.
Z

sin(x)cos(x) dx

Solution. (integration by parts) Integrating by parts with f(x)= sin(x), g 0(x)=cos(x), g(x)= sin(x), we getZ
sin(x)cos(x) dx= sin2(x)¡

Z
cos(x)sin(x) dx;

from which we conclude that
Z
sin(x)cos(x) dx= 1

2
sin2(x)+C.

Solution. (substitution) Substitute u= sin(x), because du= cos(x) dx, to getZ
sin(x)cos(x) dx=

Z
udu=

1
2
u2+C=

1
2
sin2(x)+C:

Solution. (trig identity) Since sin(2x)= 2cos(x)sin(x), we haveZ
sin(x)cos(x) dx= 1

2

Z
sin(2x)dx=¡1

4
cos(2x)+C:

Important comment. Note that 1
2
sin2(x)=/ ¡1

4
cos(2x) (for instance, plug in x=0 to see that). However, the

two functions are indeed equal up to a constant (namely, 1
2
sin2(x) =¡1

4
cos(2x) + 1

4
) as we can see from the

trig identity sin2(x)= 1¡ cos(2x)
2

.

Example 92.
Z

sinm(x)cos3(x) dx (with m=/ ¡1;¡3)

Solution. We substitute u= sin(x), because du= cos(x) dx, to getZ
sinm(x)cos3(x) dx =

Z
umcos2(x) du=

Z
um(1¡ sin2(x)) du=

Z
um(1¡u2)du

=
um+1

m+1
¡ um+3

m+3
+C =

sinm+1(x)
m+1

¡ sinm+3(x)
m+3

+C:
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The strategy in the previous problem works whenever we have an odd power of cosine:

Example 93. Describe how we can determine
Z

sinm(x)cos2k+1(x) dx.

Solution. Again, we substitute u= sin(x), because du= cos(x) dx, to getZ
sinm(x)cos2k+1(x) dx =

Z
umcos2k(x) du=

Z
um(1¡ sin2(x))k du=

Z
um(1¡u2)kdu:

For a given integer k>0, we can now multiply out the term (1¡ u2)k. Each resulting term (after multiplying
with um) can then be integrated using the power rule (as in the previous example).

Extrapolating this strategy, we can integrate the following products of trigonometric function:

�
Z

sinm(x)cosn(x)dx, with n=2k+1 odd, can be evaluated by substituting u= sin(x).

See previous example!

�
Z

sinm(x)cosn(x)dx, withm odd, can be likewise evaluated by substituting u=cos(x).

�
Z

sinm(x)cosn(x) dx, with both m;n even, can be reduced via

sin2(x)= 1¡ cos(2x)
2

; cos2(x)= 1+ cos(2x)
2

:

[Then, multiply out the integrand. The resulting integrals have smaller exponents, and we (recursively)
apply our strategy to each of them (if the 2x bothers you, substitute u=2x).]

Example 94. Determine
Z

cos2(x)dx.

Solution. (trig identity) Since both exponents are even (the exponent of sin(x) is 0, which is even), we use

the trig identity cos2(x)= 1+ cos(2x)
2

:Z
cos2(x)dx=

Z
1+ cos(2x)

2
dx=

1
2
x+

1
4
sin(2x)+C:

Solution. (integration by parts�only for practice) We choose f(x) = cos(x) and g0(x) = cos(x) (so that
g(x)= sin(x)) to getZ

cos2(x)dx= cos(x)sin(x)+
Z
sin2(x)dx= cos(x)sin(x)+

Z
(1¡ cos2(x))dx:

Note that our integral appears on both sides. Solving for it, we conclude thatZ
cos2(x)dx= 1

2
(cos(x)sin(x)+x)+C:

Our final answer looks different at first glance but is the same because sin(2x)= 2cos(x)sin(x).
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Example 95. Determine
Z

cos2(x)sin2(x)dx.

Solution. Since both exponents are even, we use the trig identities cos2(x)= 1+ cos(2x)
2

, sin2(x)= 1¡ cos(2x)
2

:Z
cos2(x)sin2(x)dx =

Z
1+ cos(2x)

2
� 1¡ cos(2x)

2
dx=

1
4

Z
(1¡ cos2(2x))dx= 1

4
x¡ 1

4

Z
cos2(2x)dx:

We now use cos2(x)= 1+ cos(2x)
2

again (or we could use the previous example) to findZ
cos2(2x)dx=

Z
1+ cos(4x)

2
dx=

1
2
x+

1
8
sin(4x)+B:

Combined, we have (we rename the constant of integration to absorb the factor of ¡1/4)Z
cos2(x)sin2(x)dx= 1

4
x¡ 1

4

�
1
2
x+

1
8
sin(4x)

�
+C =

1
8
x¡ 1

32
sin(4x)+C:
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