Notes for Lecture 18

One exponent may also be negative (in the next example, we integrate $[\sin(x)]^1 [\cos(x)]^{-1}$).

Example 96. Determine $\int \tan(x) dx$. Solution. $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$, so we substitute $u = \cos(x)$ (then $du = -\sin(x)dx$) to get $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx = -\int \frac{du}{u} = -\ln|u| + C = -\ln|\cos(x)| + C = \ln|\sec(x)| + C$.

Solution. (harder—only for practice) For some exercise in substituting, we can also substitute $u = \sin(x)$ (but can you explain how we can tell beforehand that $u = \cos(x)$ should be the better choice?). Then $du = \cos(x)dx$ or, equivalently, $dx = \frac{1}{\cos(x)}du$, so that we get

$$\int \tan(x) \, \mathrm{d}x = \int \frac{\sin(x)}{\cos(x)} \, \mathrm{d}x = \int \frac{u}{\cos^2(x)} \, \mathrm{d}u = \int \frac{u}{1 - \sin^2(x)} \, \mathrm{d}u = \int \frac{u}{1 - u^2} \, \mathrm{d}u$$

We now substitute $v = 1 - u^2$ (so that dv = -2udu) to get

$$\int \tan(x) \, \mathrm{d}x = \int \frac{u}{1-u^2} \mathrm{d}u = -\frac{1}{2} \int \frac{\mathrm{d}v}{v} = -\frac{1}{2} \ln|v| + C = -\frac{1}{2} \ln|1-u^2| + C$$
$$= -\frac{1}{2} \ln|1-\sin^2(x)| + C = -\frac{1}{2} \ln|\cos^2(x)| + C = -\ln|\cos(x)| + C$$

as earlier.

Trigonometric substitutions

Example 97. Everybody knows that $\cos^2 x + \sin^2 x = 1$. Divide both sides by $\cos^2 x$ to find $1 + \tan^2 x = \sec^2 x$.

Likewise, dividing by $\sin^2 x$, we find $\cot^2 x + 1 = \csc^2(x)$. However, note that in this identity we cannot have x = 0.

if you see	try substituting	because
$a^2 - x^2$ (especially $\sqrt{a^2 - x^2}$)	$x = a \sin \theta$	$a^2 - (a\sin\theta)^2 = a^2\cos^2\theta$
$a^2 + x^2$ (especially $\sqrt{a^2 + x^2}$)	$x = a \tan \theta$	$a^2 + (a\tan\theta)^2 = a^2 \sec^2\theta = \frac{a^2}{\cos^2\theta}$
and, somewhat less importantly:		
$x^2 - a^2$ (especially $\sqrt{x^2 - a^2}$)	$x = a \sec \theta$	$(a \sec \theta)^2 - a^2 = a^2 \tan^2 \theta$

Note that (by completing the square and doing a simple linear substitution), you can put any quadratic term $ax^2 + bx + c$ into one of these three cases (for instance, $x^2 + 2x + 3 = (x + 1)^2 + 2 = u^2 + 2$ with the simple linear substitution u = x + 1).

This is why trigonometric substitution occurs frequently for certain kinds of integrals.

Example 98. Determine $\int \frac{1}{\sqrt{1-x^2}} dx$.

Solution. We substitute $x = \sin\theta$ (with $\theta \in [-\pi/2, \pi/2]$ so that $\theta = \arcsin(x)$) because then $1 - x^2 = \cos^2\theta$. Since $dx = \cos\theta d\theta$, we find

$$\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \int \frac{\cos\theta \,\mathrm{d}\theta}{\sqrt{1-\sin^2\theta}} = \int \frac{\cos\theta \,\mathrm{d}\theta}{\sqrt{\cos^2\theta}} = \int 1 \,\mathrm{d}\theta = \theta + C = \arcsin(x) + C.$$

[Note that in order to conclude $\sqrt{\cos^2\theta} = \cos\theta$, we used that $\theta \in [-\pi/2, \pi/2]$ and that $\cos\theta \ge 0$ for these values of θ .]

On the other hand. Let's compute the derivative of $\arcsin(x)$ directly from its definition as the inverse function of $\sin(x)$: take the derivative of both sides of $\sin(\arcsin(x)) = x$ to get $\cos(\arcsin(x)) \arcsin'(x) = 1$. Hence

$$\arcsin'(x) = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1 - \sin^2(\arcsin(x))}} = \frac{1}{\sqrt{1 - x^2}}$$

Comment. Because the role of \cos and \sin in $\cos^2\theta + \sin^2\theta = 1$ is symmetric, we can also substitute $x = \cos\theta$. Do it! When comparing final answers, keep in mind that

$$\arccos(x) = \frac{\pi}{2} - \arcsin(x).$$

This reflects the relationship $\cos(\theta) = \sin(\frac{\pi}{2} - \theta)$.