
Notes for Lecture 27 Wed, 10/30/2024

Quiz. Four limits that we can �see� plus one that we need to work out, like the following:
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Series

A tortoise racing a Greek hero::: Zeno's paradox:
https://en.wikipedia.org/wiki/Zeno%27s_paradoxes#Achilles_and_the_tortoise
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Solution. Visual!

Solution. Redo this example by taking the limit of a geometric sum.

Geometric series

Review. The geometric sum is
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(geometric series) If jxj< 1, then
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If jxj>1, then the geometric series diverges.

Example 128. Compute the following series (or state that it diverges):
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Solution.
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provided that j¡x2j < 1 (which is the same as

jxj< 1). If this condition is not true, then the series diverges.

The very last example illustrates an important point. Namely, it shows that there is a novel way
to think about (and get our hands on) functions like 1

1+ x2
.

Recall that we care about this function in particular, because it was a building block in partial fractions. For
instance, we know that its antiderivative is arctan(x).

This is the main reason why we are learning about series in a course that focuses on functions!
We will see that it is very convenient to work with series representing functions: they can be differentiated and
integrated, and give us an opportunity to work with functions that cannot be written in terms of the �usual�
functions.

Example 129. Express the number 0.7777::: as a rational number.
Solution. (using geometric series)
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Solution. (highschool) Everyone is familiar with 0.3333:::= 1

3
. This implies that 0.1111:::= 1

3
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.

Hence, our number is 0.7777:::=7 � 0.1111:::= 7

9
.
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