Notes for Lecture 30 Wed, 11/6/2024
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Review. The p-series E —p converges if and only if p> 1.
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Example 145. Determine whether the following series converge or diverge.
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Solution.

(a) We could do an integral comparison test (do it!) or we could do a direct comparison (do it!) but, When

possible, it is easiest to do a limit comparison test. Namely, we can “see” that the terms a,, =

1 2n+ 1
behave I|ke for large n.

Therefore, we do a limit comparison with b, :% (you could also choose b,, = % but that factor of 2 is
not relevant):
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Since the limit is not zero and finite, limit comparison tells us that > a,, and > b,, either both converge
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or both diverge. Since g by, = g — is the harmonic, we know that it diverges. It follows that our
n=1 n=1 n
series diverges as well.
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(b) We proceed as in the previous part but now do a limit comparison with b,, = — to conclude that our
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series converges (note that E by = E —5 is a p-series with p > 1 and so converges).
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(c) We do a limit comparison of the sequence a, =< 3 with by, = —.
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First, we check that lim % = —. By the limit comparison, we then find that E n+ dlverges
because E — dlverges
n=1

(d) We do a limit comparison with b, = %/2 to conclude that both series converge.
n

| The ratio test

(absolute convergence)

oo
We say that the series Z a,, converges absolutely if Z la,| converges.
n=N n=N

It is not hard to see (check out Section 9.5 in the book) that absolute convergence implies (regular) convergence.

It is often easier to work with series where all terms are >0. Therefore, it is often easier to establish absolute
convergence of a series (and then get convergence for free). Some tests like the ratio test even give us absolute
convergence.

Caution! There are series which converge but which do not converge absolutely.
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One example is the alternating harmonic series 1 — 5+ 371 + T We will discuss alternating series soon.
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Note that a series E an IS geometric if ntl _ L is constant. It converges if and only if |L| < 1.
n=N n
. . . a .
Theorem 146. (Ratio test) Suppose the limit L= lim |[—1| exists.
n— 0o Qn
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e If L <1, then the series Z a,, converges (absolutely).
n=N

e |If L >1, then the series Z a,, diverges.
n=N

e |If L=1, then we don't know. The test is inconclusive.
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Example 147. Apply the ratio test to the geometric series Z x™.
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Solution. In this case, a,, = "™ and so

= |z].

The ratio test with L = lim

n— oo

oo
= |z| then shows that Z x"™ converges if |z| < 1, and diverges if |z| > 1.
n=0
Important. The ratio test makes no statement about the cases x =1 and x = —1. In these cases, we need to
do additional analysis. Here, it is easy to see directly that the geometric series diverges when x =1 or x = —1.
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Example 148. Determine whether the following series converge or diverge.
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Solution.
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(a) We apply the ratio test with a,, = o
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Since 3 < 1, the ratio test implies that Z on converges.
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(b) Note that — — 0o # 0. Hence, the series diverges.
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Alternatively. Suppose we didn’t realize this and, instead, we apply the ratio test with a, = —.
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Since 2 > 1, the ratio test implies that E — diverges.
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(c) We apply the ratio test with a,, = —r
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Since 0 < 1, the ratio test implies that Z % converges.
n!
n=0

Review. Recall that n!=1-2-3:--(n — 1) -n. This is the factorial.
It counts the number of ways in which you can order n objects.
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