Polar coordinates

Our usual coordinates (*x; y*) used to describe points in the plane are Cartesian coordinates. Polar coordinates are an alternative way of describing points.

The **polar coordinates** (r, θ) represent the point $(x, y) = r(\cos \theta, \sin \theta)$.

This means $x = r \cos(\theta)$ and $y = r \sin(\theta)$.

Important comment. Often, θ is taken from $[0, 2\pi)$ (but $(-\pi, \pi]$ is another popular choice), and, usually, $r \ge 0$.

Example 174. Which point (in Cartesian coordinates) has polar coordinates r $=$ 2, θ $=$ $\frac{\pi}{6}$?

Solution. $(x, y) = r(\cos \theta, \sin \theta) = 2(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}) = (\sqrt{3}, 1)$ [Draw a right triangle with angle $\frac{\pi}{6} = 30^{\circ}$ to find $\sin\frac{\pi}{6} = \frac{1}{2}$ and $\cos\frac{\pi}{6} = \sqrt{1^2-\left(\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{2}.$] 2 a set of \overline{a} and \over .]

Note. The polar coordinates $r\!=\!2$, $\theta\!=\!\frac{\pi}{6}\!+\!2\pi$ correspond to the same point $(\sqrt{3},1)$. Polar coordinates are not quite unique.

Note. Sometimes, we permit negative r. For instance, the polar coordinates $r = -2$, $\theta = \frac{\pi}{6} + \pi$ also describe the point $(\sqrt{3}, 1)$.

How to calculate the polar coordinates (r, θ) for (x, y) ? By Pythagoras, $r = \sqrt{x^2 + y^2}$, and the angle is $\theta = \text{atan2}(y, x) \in (-\pi, \pi].$

Why? It follows from $x = r\cos(\theta)$ and $y = r\sin(\theta)$ that $\frac{y}{x} = \tan(\theta)$. We therefore get $\theta = \arctan(\frac{y}{x})$ if θ is between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ (plot \tan and \arctan $\frac{\pi}{2}$ (plot \tan and \arctan to remind yourself that \arctan only takes values in $\bigl(-\frac{\pi}{2},\frac{\pi}{2}\bigr).$ $(\frac{\pi}{2}, \frac{\pi}{2})$). The function atan2 is available in most programming languages (C, C++, PHP, Java, ...) and is a version of $\arctan(x)$ (or atan in those languages). Note that $\frac{y}{x} = \frac{r \sin \theta}{r \cos \theta} = \tan(\theta)$. If our point is in the first or fourth quadrant, then $\theta = \arctan\left(\frac{y}{x}\right) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Otherwise, $\theta = \arctan\left(\frac{y}{x}\right)$ $(\frac{\pi}{2}, \frac{\pi}{2})$. Otherwise, $\theta = \arctan(\frac{y}{x}) + \pi$ (see next example).

Example 175. Find the polar coordinates, with $r \ge 0$ and $\theta \in [0, 2\pi)$ of $(5, 5)$ and $(-5, -5)$.

Solution. First, plot both points!

The polar coordinates of $(5,5)$ are $r = 2\sqrt{5}$ and $\theta = \frac{\pi}{4}$. π and π .

4 The polar coordinates of $(-5, -5)$ are $r = 2\sqrt{5}$ and $\theta = \frac{\pi}{4} + \pi = \frac{5\pi}{4}$. 4 .

Note. $(5, 5)$ is in the first quadrant and $\theta = \arctan(\frac{y}{x}) = \arctan(1) = \frac{\pi}{4}$. On the other hand, $(-5, \frac{\pi}{4})$ $\frac{\pi}{4}$. On the other hand, $(-5, -5)$ is in the third quadrant, and so $\theta = \arctan(\frac{y}{x}) + \pi = \arctan(1) + \pi = \frac{5\pi}{4}$. [atan2 allows us to avoid $\frac{5\pi}{4}$. [atan2 allows us to avoid this distinction.]

Example 176. Describe a circle around the origin with radius 3 using Cartesian and polar coordinates.

 ${\bf Solution.}$ Using Cartesian coordinates, the circle is described by $x^2 + y^2 = 3^2.$ 2 . Using polar coordinates, the circle is described by the even simpler equation $r = 3$.

Note. In this case, both coordinate equations are easy to see directly. We can, however, convert any equation in Cartesian coordinates to polar coordinates by substituting $x = r \cos \theta$ and $y = r \sin \theta$. In our case, we would go from $x^2+y^2=3^2$ to $(r\cos\theta)^2+(r\sin\theta)^2=3^2$, which simplifies to $r^2=9$ or $r=3$ (if we work with $r\geqslant0$). Example 177. Convert the following equations to polar coordinates:

- (a) $x + y = 3$
- (b) $y = x^2 + 3x + 1$

Solution. We simply replace $x = r \cos(\theta)$ and $y = r \sin(\theta)$.

- (a) $r \cos(\theta) + r \sin(\theta) = 3$
- (b) $r \sin(\theta) = r^2 \cos^2(\theta) + 3r \cos(\theta) + 1$

Example 178. Which shapes are described by the following equations?

- (a) $r = 3$
- (b) $\theta = \frac{\pi}{4}$ π 4
- (c) $1 \leq r \leq 3$, $0 \leq \theta \leq \frac{\pi}{4}$ π 4

Solution.

- (a) This is a circle of radius 3 centered at the origin.
- (b) This is the line through the origin that is angled $\frac{\pi}{4}$ $=$ 45° up. (In Cartesian coordinates, this is the line $y = x$.)
- (c) The inequality $1 \leqslant r \leqslant 3$ describes an annulus (shaped like a CD: a disk with a hole). The inequality $0\,{\leqslant}\, \theta\,{\leqslant}\, \frac{\pi}{4}$ describes a cone.

Putting these two together, the region looks as follows:

Example 179. Describe the *y*-axis using polar coordinates.

Solution. $\theta = \pm \frac{\pi}{2}$ (just $\theta = \frac{\pi}{2}$ is enough if we $\frac{\pi}{2}$ (just $\theta = \frac{\pi}{2}$ is enough if we also allow r $\frac{\pi}{2}$ is enough if we also allow $r < 0$).

Alternatively. In Cartesian coordinates, the *y*-axis is described by the equation $x = 0$. In polar coordinates, this becomes $r\cos(\theta)=0.$ We can simplify this to $r=0$ (that's just the origin) or $\cos(\theta)=0,$ where the latter becomes $\theta\!=\!\pm\frac{\pi}{2}$ (if we work with θ restricted $\frac{\pi}{2}$ (if we work with θ restricted to $(-y\!=\!x^2\!+\!3x\!+\!1\pi,\pi]).$