Review. Polar coordinates

Parametric curves

Example 180. The unit circle is described by the Cartesian equation $x^2 + y^2 = 1$ (in polar coordinates, the equation would be r = 1). Instead of such coordinate equations, we can also describe the same curve by **parametrizing** it: $x = \cos(t)$, $y = \sin(t)$ with parameter $t \in [0, 2\pi]$.

Comment. A curve can be parametrized in many ways. For instance, x = t, $y = \sqrt{1-t^2}$ with $t \in [-1, 1]$ is another parametrization of the upper half-circle.

Remark. Note the difference in philosophies behind describing curves: an equation like $x^2 + y^2 = 1$ is "exclusionary" because we start with all points (x, y) and then restrict to those with $x^2 + y^2 = 1$. On the other hand, $x = \cos(t)$, $y = \sin(t)$ with $t \in [0, 2\pi]$ is "inclusionary" because we are listing precisely the points on the curve.

We can work with parametric curves similarly to what we have been doing. For instance:

(arc length) The parametric curve
$$x = f(t)$$
, $y = g(t)$ with $t \in [a, b]$ has arc length

$$L = \int_{a}^{b} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^{2} + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^{2}} \,\mathrm{d}t = \int_{a}^{b} \sqrt{(f'(t))^{2} + (g'(t))^{2}} \,\mathrm{d}t.$$

Note that $\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \,\mathrm{d}t = \sqrt{(\mathrm{d}x)^2 + (\mathrm{d}y)^2}$ equals $\sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \,\mathrm{d}x = \sqrt{(\mathrm{d}x)^2 + (\mathrm{d}y)^2}$ from earlier.

Example 181. Using the parametric curve $x = r \cos(t)$, $y = r \sin(t)$ with parameter $t \in [0, 2\pi]$, find the circumference of a circle of radius r.

Solution.
$$L = \int_0^{2\pi} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \,\mathrm{d}t = \int_0^{2\pi} \sqrt{r^2 \sin^2(t) + r^2 \cos^2(t)} \,\mathrm{d}t = \int_0^{2\pi} r \,\mathrm{d}t = 2\pi r$$

Given a parametric curve x = f(t), y = g(t), we can compute ordinary derivatives as follows: $\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} \qquad \left[=\frac{g'(t)}{f'(t)}\right]$ Likewise, writing $y' = \frac{dy}{dx}$: $\frac{d^2y}{dx^2} = \frac{dy'}{dx} = \frac{\left(\frac{dy'}{dt}\right)}{\left(\frac{dx}{dt}\right)} \qquad \left[=\frac{\left(\frac{d}{dt}\frac{g'(t)}{f'(t)}\right)}{f'(t)} = \frac{g''(t)f'(t) - g'(t)f''(t)}{(f'(t))^3}\right]$

Why? This is just the chain rule: $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$ (in our case, $\frac{dt}{dx} = \frac{1}{f'(t)}$) It tells us that we can replace $\frac{d}{dx}$ (the derivative with respect to x) with $\frac{d}{dt}$ if we multiply the result with $\frac{dt}{dx}$. **Example 182.** Consider the parametric curve given by $x = t^2$, y = t + 1 with $t \ge 0$.

- (a) Give an equivalent (non-parametric) Cartesian equation.
- (b) Determine $\frac{\mathrm{d}y}{\mathrm{d}x}$ and $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$ at the point corresponding to t=1.

Solution.

- (a) If $x = t^2$, then $t = \sqrt{x}$, and so the curve is given by the Cartesian equation $y = \sqrt{x} + 1$. Comment. In general, eliminating the parameter, as we did here, may be difficult or impossible.
- (b) In order to see that we are really computing the same thing, we proceed both from the Cartesian equation $y = \sqrt{x} + 1$ as well as from the parametric equations:
 - (Cartesian equation) Starting with $y(x) = \sqrt{x} + 1$, we have:

$$y'(x) = \frac{1}{2\sqrt{x}} \implies y'(1) = \frac{1}{2\sqrt{1}} = \frac{1}{2}$$
$$y''(x) = -\frac{1}{4}x^{-3/2} \implies y''(1) = -\frac{1}{4}$$

• (parametric equations) We now use $x = t^2$, y = t + 1 to compute the same quantities:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{1}{2t} \implies \left[\frac{\mathrm{d}y}{\mathrm{d}x}\right]_{t=1} = \frac{1}{2}$$
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}y'}{\mathrm{d}x} = \frac{\mathrm{d}y'/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{-1/(2t^2)}{2t} = -\frac{1}{4t^3} \implies \left[\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right]_{t=1} = -\frac{1}{4}$$