Review. Polar coordinates

Parametric curves

Example 180. The unit circle is described by the Cartesian equation $x^2 + y^2 = 1$ (in polar coordinates, the equation would be $r = 1$). Instead of such coordinate equations, we can also describe the same curve by **parametrizing** it: $x = cos(t)$, $y = sin(t)$ with parameter $t \in [0, 2\pi]$.

Comment. A curve can be parametrized in many ways. For instance, $x=t, \ y=\sqrt{1-t^2}$ with $t\in[-1, \, 1]$ is another parametrization of the upper half-circle.

 ${\sf Remark.}$ Note the difference in philosophies behind describing curves: an equation like $x^2 + y^2 = 1$ is "exclusionary'' because we start with all points (x,y) and then restrict to those with $x^2 + y^2 = 1.$ On the other hand, $x = \cos(t)$, $y = \sin(t)$ with $t \in [0, 2\pi]$ is "inclusionary" because we are listing precisely the points on the curve.

We can work with parametric curves similarly to what we have been doing. For instance:

(arc length) The parametric curve
$$
x = f(t)
$$
, $y = g(t)$ with $t \in [a, b]$ has arc length

\n
$$
L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt = \int_{a}^{b} \sqrt{(f'(t))^{2} + (g'(t))^{2}} dt.
$$

Note that $\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \, \mathrm{d}t = \sqrt{(\mathrm{d}x)^2 + (\mathrm{d}y)^2}$ equals $\sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \, \mathrm{d}x = \sqrt{(\mathrm{d}x)^2 + (\mathrm{d}y)^2}$ from earlier.

Example 181. Using the parametric curve $x = r \cos(t)$, $y = r \sin(t)$ with parameter $t \in [0, 2\pi]$, find the circumference of a circle of radius *r*.

Solution.
$$
L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_0^{2\pi} \sqrt{r^2 \sin^2(t) + r^2 \cos^2(t)} dt = \int_0^{2\pi} r dt = 2\pi r
$$

Given a parametric curve $x = f(t)$, $y = g(t)$, we can compute ordinary derivatives as follows: $\frac{dy}{dx} = \frac{du}{\frac{dx}{dx}}$ $\left[= \frac{g'(t)}{f'(t)} \right]$ $\left(\frac{dy}{dt}\right)$ $q'(t)$ $\overline{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)}$ $\left[\frac{\overline{-f'(t)}}{f'(t)}\right]$ $\left[= \frac{g'(t)}{f'(t)} \right]$ Likewise, writing $y' = \frac{dy}{dx}$. $dx = \sqrt{1 + x^2}$: d^2y dy' $\left(\frac{v}{dt}\right)$ $\frac{d^2y}{dx^2} = \frac{dy'}{dx} = \frac{(\frac{dy'}{dt})}{(\frac{dx}{dt})(t')}$ $\qquad = \frac{(\frac{d}{dt}g'(t))}{f'(t)} = \frac{g''(t)}{f'(t)}$ $\left(\frac{dy'}{dt}\right)$ $\left[\begin{array}{cc} \frac{d}{dt} \frac{g'(t)}{f'(t)} & g''(t) \end{array}\right]$ $\frac{dx}{dt}$ $\frac{dx}{dt}$ $\frac{dx}{dt}$ $\frac{dx}{dt}$ $\frac{dy}{dt}$ $\int d q'(t) \lambda$ $=\frac{\sqrt{a}i\int(t)}{f/(t)}=\frac{g'(t)f'(t)}{(f/(t))^3}$ $\left(\frac{d}{dt} \frac{g'(t)}{f'(t)}\right)$ *g''(t)* $f'(t) - g'(t)$. $\frac{f^{i}(t) - g^{i}(t) f^{i}(t) - g^{i}(t) f^{i}(t)}{(f^{i}(t))^3}$ $\left(\frac{(t)-g'(t)f''(t)}{(f'(t))^3}\right]$ **Service Contract Contract Contract**

Why? This is just the chain rule: $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$ (in our case, $\frac{dt}{dx} = \frac{1}{f'(x)}$ $\frac{dy}{dt} \cdot \frac{dt}{dx}$ (in our case, $\frac{dt}{dx} = \frac{1}{f'(t)}$) It tells us that we can replace $\frac{d}{d x}$ (the derivative w $\frac{\mathrm{d}}{\mathrm{d}x}$ (the derivative with respect to x) with $\frac{\mathrm{d}}{\mathrm{d}t}$ if we multiply the $\frac{\mathrm{d}}{\mathrm{d}t}$ if we multiply the result with $\frac{\mathrm{d}t}{\mathrm{d}x}$. d*x* .

Example 182. Consider the parametric curve given by $x = t^2$, $y = t + 1$ with $t \geqslant 0$.

- (a) Give an equivalent (non-parametric) Cartesian equation.
- (b) Determine $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the po dx^2 at the point and $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$ at the point corres $\frac{d^2y}{dx^2}$ at the point corresponding to $t=1$.

Solution.

- (a) If $x = t^2$, then $t = \sqrt{x}$, and so the curve is given by the Cartesian equation $y = \sqrt{x} + 1$. Comment. In general, eliminating the parameter, as we did here, may be difficult or impossible.
- (b) In order to see that we are really computing the same thing, we proceed both from the Cartesian equation $y = \sqrt{x} + 1$ as well as from the parametric equations:
	- (Cartesian equation) Starting with $y(x) = \sqrt{x} + 1$, we have:

$$
y'(x) = \frac{1}{2\sqrt{x}} \implies y'(1) = \frac{1}{2\sqrt{1}} = \frac{1}{2}
$$

$$
y''(x) = -\frac{1}{4}x^{-3/2} \implies y''(1) = -\frac{1}{4}
$$

 \bullet (parametric equations) We now use x $=$ t^2 , y $=$ $t+1$ to compute the same quantities:

$$
\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1}{2t} \implies \left[\frac{dy}{dx}\right]_{t=1} = \frac{1}{2}
$$
\n
$$
\frac{d^2y}{dx^2} = \frac{dy'}{dx} = \frac{dy'/dt}{dx/dt} = \frac{-1/(2t^2)}{2t} = -\frac{1}{4t^3} \implies \left[\frac{d^2y}{dx^2}\right]_{t=1} = -\frac{1}{4}
$$