
Notes for Lecture 1 Wed, 8/21/2024

Review: Our zoo of functions

� polynomials

x2, x3, 7x4¡ x+2, :::

� rational functions
1

x+1
, x

2¡ 2x¡ 3
x3+7

, :::

� power functions

x2, x1/2= x
p

, x¡1/2= 1

x
p , :::

� exponentials

2x, ex, :::

� logarithms

ln(x)= loge(x), log2(x), :::

� trigonometric functions

sin(x), cos(x), tan(x)= sin(x)
cos (x) , :::

� inverse trig functions

arcsin(x), arccos(x), arctan(x), :::

Review: Computing derivatives

Given a function y(x), we learned in Calculus I that its derivative

y 0(x)= dy
dx

= lim
�x!0

�y
�x

(where �y= y(x+�x)¡ y(x)) has the following two important characterizations:

� y 0(x) is the slope of the tangent line of the graph of y(x) at x, and

� y 0(x) is the rate of change of y(x) at x.

Comment. Derivatives were introduced in the late 1600s by Newton and Leibniz who later each claimed priority
in laying the foundations for calculus. Certainly both of them contributed mightily to those foundations.

Moreover, we learned simple rules to compute the derivative of functions:

� (sum rule) d

dx
[f(x)+ g(x)] = f 0(x)+ g 0(x)

� (product rule) d

dx
[f(x)g(x)] = f 0(x)g(x)+ f(x)g 0(x)

� (chain rule) d

dx
[f(g(x))] = f 0(g(x))g 0(x)
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Comment. If we write t= g(x) and y= f(t), then the chain rule takes the form dy

dx
=
dy

dt
� dt
dx

.

In other words, the chain rule expresses the fact that we can treat dy
dx

(which initially is just a notation
for y0(x)) as an honest fraction.

� (basic functions) d

dx
xr= rxr¡1,

d

dx
ex= ex, d

dx
ln(x)= 1

x
,

d

dx
sin(x)= cos(x), d

dx
cos(x)=¡sin(x)

These rules are enough to compute the derivative of any function that we can build from the basic
functions using algebraic operations and composition. On the other hand, reversing the operation
of differentiation (i.e. computing antiderivatives) is much more difficult.
In particular, there exist simple functions (such as ex

2
) whose antiderivative cannot be expressed in terms of the

basic functions above.

Example 1. Derive the quotient rule from the rules above.

Solution. We write f(x)

g(x)
= f(x) � 1

g(x)
and apply the product rule to get

d
dx

f(x) � 1
g(x)

= f 0(x)
1

g(x)
+ f(x)

d
dx

1
g(x)

:

By the chain rule combined with d

dx

1

x
=¡ 1

x2
, we have d

dx

1

g(x)
=¡ 1

g(x)2
g 0(x). Using this in the previous formula,

d
dx

f(x) � 1
g(x)

= f 0(x)
1

g(x)
¡ f(x)

1

g(x)2
g 0(x)=

f 0(x)
g(x)

¡ f(x)g0(x)
g(x)2

:

Putting the final two fractions on a common denominator, we obtain the familiar quotient rule

d
dx

f(x)
g(x)

=
f 0(x)g(x)¡ f(x)g 0(x)

g(x)2
:

Example 2. Compute the following derivatives:

(a) d

dx
(5x3+7x2+2)

(b) d

dx
sin(5x3+7x2+2)

(c) d

dx
(x3+2x)sin(5x3+7x2+2)

Solution.

(a) d

dx
(5x3+7x2+2)= 15x2+ 14x

(b) d

dx
sin(5x3+7x2+2)= (15x2+ 14x) cos(5x3+7x2+2)

(c) d

dx
(x3+2x) sin(5x3+7x2+2)

= (3x2+2) sin(5x3+7x2+2)+ (x3+2x)(15x2+ 14x) cos(5x3+7x2+2)

Example 3. Find d

dx
tan(x) using tan(x)= sin(x)

cos(x) and the quotient rule.

Example 4. What is d

dx
ln(x)?

Why? Can you explain why this is the case?
(One way to see this is to recall that eln(x)=x and to differentiate both sides. What do you conclude?)
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Review: Integration and areas

If f(x)> 0 for x2 [a; b], then Z
a

b

f(x)dx

is defined as the area enclosed by the graph of f(x) and the x-axis between x= a and x= b.

Can you explain how the integral
R
a
b
f(x) dx is constructed from sums

P
f(x)�x?

(Here, we are summing over rectangles of width�x between a and b; at position x their height is roughly f(x).)

Comment. � is a capital sigma, and just means �sum�. Don't worry about it for now. We will see it again later.

Review: Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus connects the two operations

(a) differentiation and

(b) integration,

which, at first glance, look like they might be of a rather different nature. Roughly, it shows that
these two operations are inverses of each other.

Theorem 5. (Fundamental Theorem of Calculus, part 2)Z
a

b

f(x) dx=F (b)¡F (a);

if F (x) is an antiderivative of f(x).

The �first part� of the Fundamental Theorem of Calculus is the statement that

d
dx

Z
a

x

f(t) dt= f(x):

Modulo details (such as whether f(x) is continuous or differentiable), can you conclude this �first part� from the
�second part� above?
(Hint: in the �second part�, replace b by x and differentiate both sides with respect to x.)

Example 6. Compute
Z
1

2

xdx in two ways: first, making a sketch and using the definition as an

area; then, using the Fundamental Theorem of Calculus.
Solution.

(a) Make a sketch! The area in question consists of a 1� 1 square (area 1) with exactly half a 1� 1 square
(area 1/2) on top. Hence, the total area is 1+ 1

2
=
3

2
.

(b)
Z
1

2

xdx=

�
1
2
x2
�
1

2

=
1
2
� 22¡ 1

2
� 12= 4

2
¡ 1
2
=
3
2

Example 7.
Z
0

�

sin(x) dx=

Why is
Z
0

2�

sin(x) dx=0? Explain geometrically in terms of areas.
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Review: Antiderivatives (or indefinite integrals)

Definition 8. If f(x)=F 0(x) then we say that F (x) is an antiderivative of f(x).

We write:
Z
f(x)dx=F (x)+C

This is also called the indefinite integral of f(x).
Comment. The notation using the integral sign makes sense because of the Fundamental Theorem of Calculus.

Example 9.
Z
xdx= 1

2
x2+C

Example 10.
Z
xadx= 1

a+1
xa+1+C

Comment. Note that the case a=¡1 is special. What happens in that case?

Example 11.
Z
1¡x
x3

dx=
Z
(x¡3¡x¡2)dx=¡1

2
x¡2+x¡1+C

Example 12.
Z
x x
p

dx=
Z
x3/2dx= 2

5
x5/2+C

Substitution

The following is a first example for which the antiderivative is not so readily obtained by reversing
basic rules of differentiation.

Example 13. Determine
Z
x x2+1
p

dx by substituting u=x2+1.

Solution. We need to substitute all occurences of x in the integral, including the dx.
To substitute the latter, note that if u=x2+1 then the derivative with respect to x is

du
dx

=2x:

Solving for dx, we find dx= 1

2x
du.

Substituting in the integral, we therefore findZ
x x2+1
p

dx =

Z
x u
p 1

2x
du=

1
2

Z
u

p
du=

1
2
� 2
3
u3/2+C =

1
3
(x2+1)3/2+C:

Note how in the final step, we substituted back u= x2+1 to get the desired antiderivative in terms of x.

Comment. We could have been slightly more efficient by directly substituting xdx= 1

2
du.
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Notes for Lecture 2 Fri, 8/23/2024

Substitution, cont'd

In general, finding the right substitution can be tricky and there are no straightforward rules that
work for every integral. However, for our integrals there is usually a natural choice.

On the other hand, there is often more than one way to substitute successfully (see next example).

Example 14. (cont'd) Determine
Z
x x2+1
p

dx

(a) by substituting u=x2+1, and

(b) by substituting u= x2+1
p

.

(c) Explain why the substitution u=x2+1 is particularly natural.

Solution.

(a) Since u= x2+1, we have du

dx
=2x so that xdx= 1

2
du.

The integral therefore becomesZ
x x2+1
p

dx =

Z
1
2

u
p

du=
1
2
� 2
3
u3/2+C=

1
3
(x2+1)3/2+C:

(b) Since u= x2+1
p

, we have du

dx
=

1

2 x2+1
p � 2x= x

u
so that xdx=udu.

The integral therefore becomesZ
x x2+1
p

dx =

Z
u �u du=

Z
u2du=

1
3
u3+C =

1
3
(x2+1)3/2+C:

(c) The x2+1
p

in the integrand will become u
p

(of course) while the remaining x in the integrand is (up
to a factor of 2) exactly the derivative of x2+ 1 (and so will disappear when we bring in du to replace
dx). With a bit of practice, this allows us to immediately see that our substitution will be a success.

Substitution in definite integrals

If we want to apply substitution in a definite integral like
Z
a

b

f(x)dx, we have two options:

(a) We can first compute the indefinite integral
Z
f(x)dx using substitution.

If the result is F (x)+C, then
Z
a

b

f(x)dx=F (b)¡F (a).

(b) Or, we can substitute the limits a and b as well to get a new definite integral
Z
c

d

g(u)du.

Often you can choose either approach. But for certain problems it might not be possible to compute the indefinite
integral explicitly (so the first approach won't work), yet it can be useful obtain a substituted new integral using
the second approach.
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Example 15. Determine
Z
0

1

x x2+1
p

dx.

Solution. Let us illustrate both of the two approaches just mentioned:

(a) In the previous example, we already worked out that
Z
x x2+1
p

dx=
1

3
(x2+1)3/2+C. It follows thatZ

0

1

x x2+1
p

dx=

�
1
3
(x2+1)3/2

�
0

1

=
1
3
23/2¡ 1

3
:

(b) As in the previous example, we will substitute u= x2+1. Since du

dx
=2x, we get xdx= 1

2
du.

Moreover, if x = 0 (lower limit) then u = x2 + 1 = 02 + 1 = 1. And if x = 1 (upper limit) then
u= x2+1=12+1=2. The definite integral therefore becomesZ

0

1

x x2+1
p

dx =

Z
1

21
2

u
p

du=

�
1
3
u3/2

�
1

2

=
1
3
23/2¡ 1

3
:

Comment. While it looks like the first approach was much quicker, that's only because we had already computed
the indefinite integral in the previous example. In general, if we haven't already done so, the second approach is
a bit more direct (but requires us to pay attention to the limits of the integral).

Review 16.
Z
1
x
dx= lnjxj+C

To verify, use lnjxj=
�
ln(x); if x> 0;
ln(¡x); if x< 0;

to differentiate the right-hand side.

Example 17. Determine
Z
0

� sin(t)
2¡ cos(t)

dt.

Here, a very natural substitution is u=2¡ cos(t).

(Note how we can already anticipate that the derivative will nicely take care of the sin(t) in the integrand.)

Solution. We again have the choice of either substituting without limits or with limits:

(a) We substitute u=2¡ cos(t). Since du

dt
= sin(t), we get sin(t)dt=du. Hence,Z

sin(t)
2¡ cos(t)

dt=

Z
1
u
du= lnjuj+C = lnj2¡ cos(t)j+C:

Hence (by the Fundamental Theorem of Calculus)Z
0

� sin(t)
2¡ cos(t)

dt=
h
lnj2¡ cos(t)j

i
0

�
= ln(3):

(b) Alternatively, once we feel comfortable with integration, we can do this substitution in a single step
by also adjusting the boundaries. When t = 0 we have u = 2 ¡ cos(0) = 1, and when t = � we have
u=2¡ cos(�)= 3. Therefore,Z

0

� sin(t)
2¡ cos(t)

dt=

Z
1

31
u
du=

h
lnjuj

i
1

3
= ln(3):
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Extra practice

Example 18. Determine
Z
x3 x2+1

p
dx.

Solution. We substitute u= x2+1. Since du

dx
=2x, we have xdx= 1

2
du.

Note that there will be x2 left into the integral which we replace with x2=u¡ 1.
The integral therefore becomes:Z

x3 x2+1
p

dx =

Z
1
2
x2 u
p

du=

Z
1
2
(u¡ 1) u

p
d

=
1
2

Z
(u3/2¡u1/2) du= 1

5
u5/2¡ 1

3
u3/2+C

=
1
5
(x2+1)5/2¡ 1

3
(x2+1)3/2+C

Comment. If you prefer, the final answer could be rewritten as 1
15
(x2+1)3/2(3x2¡ 2)+C.

Example 19.
Z

dx
xln(x)

=

First, use the substitution u= ln(x). (Can you already see why this is a good choice?)

Then, for practice, use u= 1

ln(x) and see if you can get the same final answer.

(For more complicated integrals, finding the �best� substitution is quite an art form. For the integrals we are
concerned with, there is always a natural choice.)

Example 20.
Z
2

4 dx
xln(x)

=

To reduce work, use the previous problem and the fundamental theorem.

Example 21.
Z
x sin(x2+3) dx=

Example 22.
Z

1
x2

cos
�
1
x

�
dx=

Example 23.
Z
3x5 x3+1

p
dx=

First, use the substitution u=x3+1 (that's the most natural choice).

Then, for practice, use u= x3+1
p

and see if you can get the same final answer.

Armin Straub
straub@southalabama.edu

7



Notes for Lecture 3 Mon, 8/26/2024

Review. There will be a first quiz in lab on Thursday. One of the two problems will be to compute
an integral like the following by substitution:Z

cos5(3t)sin(3t)dt

Example 24.

(a) Determine
Z
0

� sin(t)
2¡ cos(t)

dt.

(b) Determine
Z
0

� sin3(t)
2¡ cos(t)

dt.

Solution.

(a) (again) We substitute u=2¡ cos(t). When t=0 we have u=2¡ cos(0)=1, and when t=� we have
u=2¡ cos(�)= 3. Therefore,Z

0

� sin(t)
2¡ cos(t)

dt=

Z
1

31
u
du=

h
lnjuj

i
1

3
= ln(3):

(b) We substitute u= 2¡ cos(t) again. When t= 0 we have u= 2¡ cos(0) = 1, and when t= � we have
u=2¡ cos(�)= 3. This time, there will be sin2(t) left over in the integral so we need to rewrite this in
terms of u.
Note that cos(t) = 2¡ u. (At this point, we could solve for t to get t= arccos(2¡ u) and use this to
substitute away any remaining t. However, we would get sin2(t) = sin2(arccos(2 ¡ u)) which is not
pleasant and would have to be simplified. We get this simplification for free by proceeding slightly
differently.) Recall that cos2(t)+ sin2(t)=1 so that sin2(t)=1¡cos2(t)=1¡ (2¡u)2=¡u2+4u¡3.
Therefore,Z

0

� sin3(t)
2¡ cos(t)

dt=

Z
1

3sin2(t)
u

du=

Z
1

3¡u2+4u¡ 3
u

du=

Z
1

3
�
¡u+4¡ 3

u

�
du= :::=4¡ 3ln(3):

Areas enclosed by curves

Theorem 25. The area enclosed by the curves y= f(x) and y= g(x), between x=a and x= b,
is given by Z

a

b

[f(x)¡ g(x)] dx

provided that f(x)> g(x) (for all x2 [a; b]).
[Note that the area is always

R
a
b jf(x) ¡ g(x)j dx but to work with the absolute value, we need to break the

problem into subcases according to whether f(x)¡ g(x)> 0 or f(x)¡ g(x)6 0.]

Example 26. What is the area enclosed by the curves y= cos(x), y=1, x=0, x=2�?
First, write down an integral and compute its value, then look at your sketch (always make a quick
sketch!) and confirm that your answer makes rough sense.
Solution. Note that y=1 describes a horizontal line while x=0 and x=2� are two vertical lines. For our area,
y=1 lies above y= cos(x). Therefore, the area in question isZ

0

2�

(1¡ cos(x))dx=
h
x¡ sin(x)

i
0

2�
=(2�¡ sin(2�))¡ (0¡ sin(0))= 2�:
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Notes for Lecture 4 Wed, 8/28/2024

Example 27. Consider the plot below. What is the area enclosed by the curves y= f(x), y= g(x)
and y=h(x)?

a b c d

g(x)

f(x)

h(x)

Solution. We split up the area into three smaller regions in which we can apply Theorem 25. The area isZ
a

b

[h(x)¡ g(x)]dx+

Z
b

c

[f(x)¡ g(x)]dx+

Z
c

d

[h(x)¡ g(x)]dx:

Comment. In this case, we can alternatively (and equivalently) write the area as the differenceZ
a

d

[h(x)¡ g(x)]dx¡
Z
b

c

[h(x)¡ f(x)]dx:

Example 28. What is the area enclosed by the curves y=2¡x2, y=¡x?

(a) First, make a sketch!

(b) Find intersections of the curves.

(c) Write down the integral for the area of interest.

(d) Evaluate the integral.

Solution.

(a) Do it! This should always be our first step.

(b) Since the equations for both curves are of the form y = :::, we can find the (x coordinates of the)
intersections by setting the right-hand sides of the equations equal:

2¡ x2=¡x =) x2¡ x¡ 2=0 =) x=¡1; 2

For the final step, we solved the quadratic equation (for instance, using the quadratic formula).
[It's not needed for the remaining parts, but we can get the corresponding y-coordinates from either
y=2¡x2 or y=¡x. The latter is simpler and we find that the two intersections are (¡1;1) and (2;¡2).]

(c) This tells us (look at sketch!) that our area extends from x=¡1 to x=2 and that the curve y=2¡x2
is the upper boundary while y=¡x is the lower boundary. Therefore, the area isZ

¡1

2

((2¡x2)¡ (¡x))dx:

(d) We compute the area asZ
¡1

2

((2¡x2)¡ (¡x))dx=
Z
¡1

2

(2+ x¡ x2)dx=
�
2x+

1
2
x2¡ 1

3
x3
�
¡1

2

= :::=
9
2
:

�
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Example 29. What is the area enclosed by the curves y=3¡x2, y=2, y=¡1?
First, make a sketch like we did in class!
For this problem, we then have a choice of whether we cut up our area into tiny vertical rectangles (with width dx)
or into tiny horizontal rectangles (with width dy). Below, we do both. Of course, the final answer will be the same.

Solution. (vertical slicing) We first need to find the intersections of the parabola y=3¡x2 with each of y=2
and y=¡1.

� y=3¡ x2 and y=2: solving 3¡ x2=2, we get x2=1 and so x=�1.

� y=3¡ x2 and y=¡1: solving 3¡ x2=¡1, we get x2=4 and so x=�2.

The area is therefore given by the following three integrals:Z
¡2

¡1
((3¡ x2)¡ (¡1))dx+

Z
¡1

1

(2¡ (¡1))dx+
Z
1

2

((3¡x2)¡ (¡1))dx

You might notice that the first and last integral must be equal, while the second integral is just computing the
area of a rectangle of height 2¡ (¡1)=3 and width 1¡ (¡1)= 2 (and so its area is 3 � 2=6).
Whether or not you use any simplifications, the above integrals evaluate to 5

3
+6+

5

3
=

28
3

(do it!).

Solution. (horizontal slicing) This time we don't need to compute the intersections because the area (see
sketch!) clearly extends from y=¡1 to y=2.
Since we are working in y-direction, we rewrite y=3¡x2 as x2=3¡ y or x=� 3¡ y

p
(note that x= 3¡ y

p

describes the right half, while x=¡ 3¡ y
p

describes the left half).

So the horizontal slice has length 3¡ y
p

¡ (¡ 3¡ y
p

)= 2 3¡ y
p

. Accordingly, the total area isZ
¡1

2

( 3¡ y
p

¡ (¡ 3¡ y
p

))dy=2

Z
¡1

2

3¡ y
p

dy=2

�
¡2
3
(3¡ y)3/2

�
¡1

2

=¡4
3
(1¡ 43/2)=¡4

3
(1¡ 8)= 28

3
:
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Notes for Lecture 5 Fri, 8/30/2024

Volumes using cross-sections

We have computed areas of certain regions by cutting them into tiny (typically vertical) pieces of
width dx and some height h(x). If the region extends from x= a to x= b, then the total area is
the sum of the areas of these pieces (each has area h(x)dx) and therefore given by

area=
Z
a

b

h(x)dx:

We now use the same idea to compute volumes:
Please have a look at the Section 6.1 in the book for all the pretty pictures and detailed explanations. Below is
just a summary which probably doesn't make too much sense unless you have been in class or have read through
the beginning of Section 6.1.

� The volume of a cylindrical solid is its base area times its height.

� The idea for computing the volume of more general solids is to cut it into little slices that
are approximately cylindrical.

� Suppose that the slice at position x has cross-sectional area A(x). If we are slicing with
a width of dx, then this slice has roughly volume A(x)dx.

� Summing the volumes of all these slices leads to the follwing formula of the volume of the
general solid:

vol=
Z
a

b

A(x)dx

Note: It is usually up to us to introduce coordinates for the position x. The formula above assumes that
our solid extends from x= a to x= b in these coordinates.

Example 30. Derive the formula for the volume of a pyramid of height h whose base is a square
with sides of length a.

You might remember that the volume is 1

3
a2h but the point of this example is that we can actually find this

formula without knowing it by slicing the pyramid (the easiest way to slice is horizontally, so that each cross-
section is again just a square).

Solution. We cut the pyramid into cross-sections parallel to its base. Let x, between 0 and h, denote how far
we have gone from the tip (x=0) down to the base of the pyramid (x=h). Then, at x, the cross-section is a
square with side length a x

h
(make a sketch!). This cross-section has areaA(x)=

¡ a
h
x
�
2. Therefore, the volume is

vol=
Z
0

h

A(x)dx=

Z
0

h� a
h
x
�
2
dx=

a2

h2

Z
0

h

x2dx=
a2

h2

�
1
3
x3
�
0

h

=
a2

h2
�
�
1
3
h3¡ 0

�
=
1
3
a2h:

Comment. Introducing the extra variable x can be done in different ways and it requires some practice to make
the easiest choice. For instance, if we had let x, again between 0 and h, denote how far we have gone from the
base (x=0) to the tip of the pyramid (x=h), then, at x, the cross-section is a square with side length a x¡h

h
.

We would get the same in the end but with a little bit more algebra.
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Solids of revolution

Consider a region (for instance, the region enclosed by a bunch of curves). A solid of revolution
is what we obtain when revolving this region about a given line.

Again, Section 6.1 in the book contains lots of helpful illustrations.

� Suppose the region is the area between a curve R(x) and the x-axis, between x= a and
x= b.

� Further, suppose that we revolve this region about the x-axis. Then, slicing vertically,
the cross-sections are disks (circles with the interior) with radius R(x) (so that the cross-
sectional area is A(x)=�R(x)2).

� Hence, the volume of the resulting solid is

vol=
Z
a

b

A(x)dx=
Z
a

b

�R(x)2 dx:

Example 31. Consider the region enclosed by the curves y = x
p

, y = 0, x = 1, x = 4. If we
revolve this region about the x-axis, what is the volume of the resulting solid?
Solution. Make a sketch! The solid should look roughly like a solid coffee mug (no room for coffee) without
handles.
The cross-section at x is a disk with radius R(x) = x

p
and so has area �R(x)2 = �x. If we give this disk a

thickness of dx, then its volume is �R(x)2 dx=�xdx. The total volume is

vol=
Z
1

4

�R(x)2dx=

Z
1

4

�xdx=�

�
1
2
x2
�
1

4

=�

�
8¡ 1

2

�
=
15
2
�:

Example 32. Consider the region enclosed by the curves y = x
p

, y = 1, x = 1, x = 4. If we
revolve this region about the line y=1, what is the volume of the resulting solid?
Solution. Again, make a sketch! This solid should look roughly like a bullet.
The cross-section at x now is a disk with radius R(x) = x

p ¡ 1 and so has area �R(x)2= �( x
p ¡ 1)2. If we

give this disk a thickness of dx, then its volume is �R(x)2 dx=�xdx. The total volume is

vol=
Z
1

4

�R(x)2dx=

Z
1

4

� ( x
p ¡1)2dx=

Z
1

4

� (x¡2 x
p

+1)dx=�

�
1
2
x2¡ 4

3
x3/2+x

�
1

4

=�

�
4
3
¡ 1
6

�
=
7
6
�:

Example 33. Consider (again) the region enclosed by the curves y= x
p

, y=1, x=1, x=4. If
we revolve this region about the x-axis, what is the volume of the resulting solid?
The solid should look roughly like the coffee mug from Example 31 with a cylindrical hole drilled out.
What do the cross-sections look like now?
Your final answer should be 9

2
�.

Solution. The solid should look roughly like the coffee mug from Example 31 with a cylindrical hole drilled out.
The cross-section at x now is a washer with outer radius R(x)= x

p
and inner radius r(x)=1 so that its area is

�R(x)2¡�r(x)2=�x¡�=�(x¡1). If we give this washer a thickness of dx, then its volume is �(x¡ 1)dx.
The total volume is

vol=
Z
1

4

� (x¡ 1) dx=�

�
1
2
x2¡ x

�
1

4

=�

�
4¡
�
¡1
2

��
=
9
2
�:

Comment. In this simple case, we could also obtain the final answer from Example 31 by simply subtracting the
volume of the cylinder (base area � � 12 times height 4¡ 1=3 gives a volume of 3�) that is �drilled out�.

Armin Straub
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Notes for Lecture 6 Wed, 9/4/2024

Volumes using cylindrical shells

See Section 6.2 in our book for nice illustrations of cylindrical shells!

Example 34. Consider the region bounded by the curves y=x2, y=0 and x=2. Determine the
volume of the solid generated by revolving this region about the y-axis

(a) using horizontal cross-sections of the region (turning into washers), and

(b) using vertical cross-sections of the region (turning into cylindrical shells).

Solution. First, make a sketch as we did in class!

(a) Our region extends from y = 0 to y = 4. The cross-section at y (a line which extends from x = y
p

to x = 2) turns into a washer with outer radius R(y) = 2 and inner radius r(y) = y
p

, which has area
�R(y)2¡�r(y)2=�(4¡ y). If we give this disk a thickness of dy, then its volume is �(4¡ y)dy. The
total volume is

vol=
Z
0

4

�(4¡ y) dy=�

�
4y¡ 1

2
y2
�
0

4

=8�:

(b) Our region extends from x = 0 to x = 2. The cross-section at x (a line which extends from y = 0
to y = x2) turns into a cylindrical shell with radius r(x) = x and height h(x) = x2 and so has area
2�r(x) �h(x)=2�x3. If we give this shell a thickness of dx, then its volume is 2�x3dx. The total volume is

vol=
Z
0

2

2�x3 dx=2�

�
1
4
x4
�
0

2

=8�:

The following is a similar but slightly beefed up example.

Example 35. Consider the region bounded by the curves y=x2, y=1 and x=2. Determine the
volume of the solid generated by revolving this region about the line x=¡1.

(a) using horizontal cross-sections of the region (turning into disks), and

(b) using vertical cross-sections of the region (turning into cylindrical shells).

Solution. As always, start with a sketch! Note that y=1 is now describing the bottom: the bottom-left corner
of the region is (1; 1), the bottom-right corner is (2; 1), and the top-right corner is (2; 4).

(a) Our region extends from y=1 to y=4. The cross-section at y (a line which extends from x= y
p

to x=2)
turns into a washer with outer radius R(y)=2¡ (¡1)=3 and inner radius r(y)= y

p ¡ (¡1)= y
p

+1,
which has area �R(y)2¡�r(y)2=9�¡�( y

p
+1)2=�(8¡ 2 y

p ¡ y). If we give this disk a thickness
of dy, then its volume is �(8¡ 2 y

p ¡ y)dy. The total volume is

vol=
Z
1

4

�(8¡ 2 y
p ¡ y) dy=�

�
8y¡ 4

3
y3/2¡ 1

2
y2
�
1

4

=�

�
40
3
¡ 37

6

�
=
43
6
�:

(b) Our region extends from x = 1 to x = 2. The cross-section at x (a line which extends from y = 1 to
y= x2) turns into a cylindrical shell with radius r(x)= x¡ (¡1)= x+1 and height h(x) = x2¡ 1 and
so has area 2�r(x) �h(x)=2�(x+1)(x2¡ 1). If we give this shell a thickness of dx, then its volume is
2�(x+1)(x2¡ 1)dx. The total volume is

vol=
Z
1

2

2�(x+1)(x2¡ 1) dx=
Z
1

2

2�(x3+ x2¡ x¡ 1) dx=2�

�
1
4
x4+

1
3
x3¡ 1

2
x2¡ x

�
1

2

=
43
6
�:

Armin Straub
straub@southalabama.edu
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Example 36. (extra) Consider the region enclosed by the curves

y= x
p

; y=0; x=0; x=4:

Determine the volume of the solid generated by revolving this region about the x-axis

(a) using vertical cross-sections of the region, and

(b) using horizontal cross-sections of the region.

Solution. As always, start with a sketch!

(a) The volume is Z
0

4

�( x
p

)2 dx=�

Z
0

4

xdx=�

�
1
2
x2
�
0

4

=8�:

(b) We operate between y = 0 and y = 4
p

= 2. A slice at height y has width 4 ¡ y2 (note that y = x
p

implies x= y2). Giving this slice a thickness of dy and revolving about the x-axis, we obtain a cylindrical
shell with approximate volume

(circumference)� (width)� (thickness)= (2�y)(4¡ y2) dy:

�Summing� all these volumes, we getZ
0

2

2�y(4¡ y2) dy=2�

�
2y2¡ 1

4
y4
�
0

2

=2�(8¡ 4)= 8�:

Sure enough, the volume is exactly what we calculated before.

Armin Straub
straub@southalabama.edu
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Notes for Lecture 7 Fri, 9/6/2024

Review. Which equation describes the circle of radius r centered at the origin?
Solution. The circle consists of all points (x; y) that satisfy x2+ y2= r2.
This is just the Pythagorean theorem (make a sketch to make sure this is clear to you).

Example 37. We wish to compute the volume of a ball of radius r.

(a) Which region can we revolve to obtain a ball as our solid of revolution?

(b) Setup the appropriate integral for the volume and evaluate it.

For practice, you can compute it using disks/washers as well as using cylindrical shells.

Solution.

(a) We can revolve a half-circle to end up with a ball. A convenient choice is to take the region between
y= r2¡ x2

p
and revolve it about the x-axis. This is what we will use for the next part.

(b) Taking vertical cross-sections, we get disks after revolving and the total volume isZ
¡r

r

�
�

r2¡ x2
p �

2
dx=

Z
¡r

r

�(r2¡ x2) dx=�

�
r2x¡ 1

3
x3
�
¡r

r

=
4
3
�r3

Sure enough, this is the formula for the volume of a ball that we have seen before (though our memory
might be foggy on the exact formula).

Alternatively. It is more complicated here but, for practice, we can also take horizontal cross-sections
in which case we get cylindrical shells after revolving. Lets take the cross-section at height y where y is
between 0 and r. This cross-section extends from x=¡ r2¡ y2

p
to x= r2¡ y2

p
and therefore has

width 2 r2¡ y2
p

. Giving this slice a thickness of dy and revolving about the x-axis, we obtain a cylindrical
shell with approximate volume

(circumference)� (width)� (thickness)= (2�y)
�
2 r2¡ y2
p �

dy:

�Summing� all these volumes, we getZ
0

r

(2�y)
�
2 r2¡ y2
p �

dy=4�

Z
0

r

y r2¡ y2
p

dy=4�

�
¡1
3
(r2¡ y2)3/2

�
0

r

=
4
3
�r3:

Here, we substituted u = r2 ¡ y2 to compute the integral (do it!). The final volume is, of course, the
same we calculated before.

Armin Straub
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Arc length

Example 38. What is the length of the curve y=2x, for 06x6 4?
Make a sketch and use Pythagoras.

Solution. The curve is the hypothenuse of a right triangle with shorter sides of length 4 (in x-direction) and 8
(in y-direction). Therefore its length is 42+82

p
= 80
p

=4 5
p

.

(arc length) The length of a general curve y= f(x), for a6x6 b, is given byZ
a

b

1+ (f 0(x))2
p

dx:

Why? To see how we can arrive at this formula, we proceeded as follows:

� We chop the x-axis into little pieces of width dx and look at the corresponding pieces of our graph.

� Suppose we are looking at our graph near x. If we zoom in plenty, then the tiny portion of the graph we
see begins to look roughly like a line with slope f 0(x).

� We can compute the length of a segment of this line as we did in Example 38 by using Pythagoras. If the
segment extends dx horizontally, then it extends f 0(x)dx vertically (make a sketch!). [We can also
write f 0(x)dx= dy

dx
dx=dy.]

By Pythagoras, our piece of the line has length

(dx)2+(f 0(x) dx)2
q

= 1+(f 0(x))2
q

dx:

� �Adding� all these little pieces, we obtain the formula above for the total length of the curve.

Example 39. (again) Using the integral formula, compute the length of the curve y = 2x, for
06x6 4, again. Of course, the answer agrees with Example 38.

Solution. Here, f(x)= 2x so that f 0(x)= 2. Hence, the length isZ
a

b

1+ (f 0(x))2
q

dx=

Z
0

4

1+22
p

dx=4 5
p
� 8.944:

Example 40. Compute the length of the curve y=x3/2, for 06x6 4.
Before you compute the answer, make a sketch. Which curve should be longer: y= x3/2 or y=2x?

Solution. With f(x)= x3/2, we have f 0(x)= 3

2
x

p
. The length is

Z
0

4

1+

�
3
2

x
p
�
2

s
dx=

Z
0

4

1+
9
4
x

r
dx=

Z
1

104
9

u
p

du=
4
9

�
2
3
u3/2

�
1

10
=

8
27
( 1000
p

¡ 1)� 9.073:

Here, we substituted u = 1 +
9

4
x. Make sure that this substitution is clear to you (including the change of

boundaries: if x=4 then u=?).

Armin Straub
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Comparing the lengths. As for comparing the lengths, note that, on the interval 06x6 4, both y=x3/2 and
y=2x begin at the point (0; 0) and end at the point (4; 8). Since a line is the shortest connection between two
points, the arc length for y=x3/2 had to be larger.
However, you can see that the difference is not much. This is confirmed by the plot below:

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

2x
x3/2

Example 41. Setup an integral for the circumference of a circle of radius r.

Armin Straub
straub@southalabama.edu
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Notes for Lecture 8 Mon, 9/9/2024

Review. The (arc) length of a general curve y= f(x), for a6x6 b, is given by

Z
a

b

(dx)2+(dy)2
p

=
Z
a

b

1+
�
dy
dx

�
2

s
dx:

Example 42. (extra) Using our new technology, compute the circumference of a circle of radius r.

Solution. Of course, the final answer has to be 2�r.

� First, in order to work with a function, we consider the (upper) half circle.

That half-circle is described by y= r2¡ x2
p

and the length of that curve (from x=¡r to x= r) is half
of the circumference of our circle.

� dy
dx

=
¡x
r2¡x2

p
� Hence, the circumference of our circle is given by the integral

2

Z
¡r

r

1+

 
¡x
r2¡ x2

p !
2

vuuuut dx=2

Z
¡r

r

1+
x2

r2¡x2

r
dx=2

Z
¡r

r r2

r2¡ x2

r
dx:

� Now, we substitute u= x/r.
Why? Just looking at the integral, the reason for choosing this substitution might not be obvious.
However, thinking about our actual problem, this substitution is very natural: it scales things by 1/r so
that our circle gets rescaled to a circle of radius 1.

It is very common in applications that we need to change scales or coordinate systems. When dealing with
integrals, we then need to perform the corresponding substitution.

Such changes of scale or coordinate systems for practical reasons is a second important reason why we
need to be able to substitute. (So far we substituted as a means to mathematically simplify an integral.)

� To substitute, we compute
du
dx

=
1
r
, and so dx= rdu [r is just a number�we can treat it like we would treat 7.]

For the boundaries of the integral: if x=¡r, then u=¡1. If x= r, then u=1.
Since x= ru, we therefore get

2

Z
¡r

r r2

r2¡ x2

r
dx=2

Z
¡1

1 r2

r2¡ (ru)2

s
� rdu=2r

Z
¡1

1 1

1¡u2
p du:

� We can actually evaluate this final integral (more on such integrals later) if we recall that the derivative
of arcsin(u) is 1/ 1¡u2

p
. Hence,

2r

Z
¡1

1 1

1¡u2
p du=2r

h
arcsin(u)

i
¡1

1
=2r[arcsin(1)¡ arcsin(¡1)]= 2�r:

Armin Straub
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Physical work

Work is force times distance: W =Fd.
� F could be measured in lb and d in ft. Then W is conveniently measured in ft-lb.

� The SI units for F are N (newton), for d they are m (meter), andW is measured in Nm (newtonmeter)
or joule (1 Nm = 1 joule � 0.738 ft-lb).

Think about the work necessary to lift an object to a certain height.

Calculus comes in when the force F is not constant!

Example 43. Suppose we wish to lift a 100 lb piano from the ground to the top of a 20 ft building
(for instance, by standing on the roof and pulling it up using a rope). The work required for that is

work=(100 lb)(20 ft)= 2000 ft-lb:

This was easy because the force was constant througout the problem (the piano always weighed 100 lb). It is
when the force varies (as in the next example) that we need our calculus skills and mastery of integrals.

Example 44. As before, we wish to lift a 100 lb piano from the ground to the top of a 20 ft
building. We are doing so by standing on the roof and pulling it up using a rope. However, this
time, we are using a rather heavy rope weighing 0.1 lb/ft and want to take that into account
(just pulling up the rope, dangling to the ground, would require some work).

Think about the moment when the piano is x ft off the ground (and we want to pull it up by dx ft):

� We still need to pull up 20¡x ft.
So, at that moment, the weight (piano plus rope) to be pulled up is 100+0.1(20¡x) lb.

� Hence, to pull up the piano by a tiny amount of dx feet, the amount of work needed is
(roughly) [100+ 0.1(20¡x)]dx pound.

[Assuming that dx is very small, the change in weight is insignificant, so that we can use W =Fd.]

To get the total amount of work (in ft-lb), we need to �add� up these small contributions from
x=0 to x= 20:

work=
Z
0

20
[100+ 0.1(20¡x)]dx:

It only remains to calculate this integral (which is very simple in this case):

work=
Z
0

20
[102¡ 0.1x]dx=

�
102x¡ 0.1

2
x2

�
0

20
= 2020 ft-lb:

Comment. In this simple example, you can get away with not computing any integrals by arguing as follows:
the rope weighs a total of 20 �0.1=2 lb. On average, we need to lift it 10 ft so that the total amount of work
needed to pull up the rope is 2 lb � 10 ft = 20ft-lb. Added to the work required for just the piano (2000ft-lb,
see previous example), we get the total that we just computed.

Armin Straub
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Example 45. A conical container of radius 10 ft and height 30 ft is completely filled with water
(the tip of the cone is at the bottom). How much work will it take to pump the water to a level
of 2 ft above the cone's rim? [Water weighs 62.4 lb/ft3.]

Solution. Make a sketch! Let us denote with y (in ft) the vertical position in such a way that the tip is at y=0
and the rim is at y= 30. We need to pump the water to the level y= 30+2= 32.
We consider a horizontal slice at height y and thickness dy:

� This slice needs to be lifted up (30¡ y)+ 2= 32¡ y (ft).
(If we considered vertical slices, we could not make such a statement and therefore would be stuck here.)

� The slice is (almost) a disk with radius r= 10
30
y=

y

3
. Hence, its volume is �r2 dy= �

9
y2dy (ft3).

� The weight of the slice is 62.4 �
9
y2 dy (lb) and it needs to be lifted up 32¡ y (ft). That takes work of

(32¡ y) � 62.4 �
9
y2dy (ft-lb).

� �Adding� up, the total work required isZ
0

30
(32¡ y) � 62.4 �

9
y2dy= :::� 1.86 � 106 ft-lb:

Comment. Note that we rounded the answer to 3 significant digits, because we cannot expect more precision
given that the weight of water per ft3 is only given to us to 3 digits.

Example 46. Repeat Example 45 if . . .

(a) . . . the container is not completely filled with water but only to a height of 15 ft.

(b) . . .we stop pumping once the container is filled with water to a height of 15 ft.

Can you predict in which case the work required is larger?

Solution.

(a) In that case, the total work required isZ
0

15
(32¡ y) � 62.4 �

9
y2dy= :::� 508,000 ft-lb:

(b) In that case, the total work required isZ
15

30
(32¡ y) � 62.4 �

9
y2dy= :::� 1.35 � 106 ft-lb:

Comment. Note that the sum of these two is again 1.86 �106 ft-lb. Think about why that makes perfect sense!

Armin Straub
straub@southalabama.edu

20



Notes for Lecture 9 Wed, 9/11/2024

Example 47. We want to �lift� a 1600 kg satellite from the ground into orbit, 20,000 km above
the surface. Let us compute the theoretic amount of work required to do so.
Context. These are actually typical values for a GPS satellite. For comparison, the ISS has an average altitude
about 400 km, while the moon is about 384,000 km away. Light travels at the speed of about 300,000 km/s
(sound only at about 340 m/s).

Solution. First, let us gather the necessary background information:

� Initially, the satellite is sitting on the surface, about d1=6371 km from the center of earth (for gravitation,
earth behaves like all its mass is concentrated at its center).
The goal is to bring the satellite to a distance d2= 26,371 km from the center of earth.

� The mass of the earth is about mE= 5.972 � 1024 kg. The mass of our satellite is mS= 1600 kg.

� The physical law of attraction is F =G
mEmS

d2
.

It tells us the force of attraction between two masses (here, the satellite and earth) that are at distance d.
Here, G= 6.674 � 10¡11 N �m2/kg2 is the gravitational constant.
Comment. Note that this force is not constant in our problem: the values of d range from d=d1 to d=d2.

Make a sketch! Similar to our approach Example 44, we now think about the moment when the satellite is at
distance x from the center of the earth and about the amount of work needed to lift it by dx.

� At that moment, the gravitational force is GmSmE

x2
.

� To lift up the satellite by a tiny amount of dx, the amount of work needed is (roughly) GmSmE

x2
dx (force

times distance).

Hence, the total amount of work is

work=
Z
d1

d2
G
mSmE

x2
dx=GmSmE

Z
d1

d2dx

x2
=GmSmE

�
¡1
x

�
d1

d2

=GmSmE

�
1
d1
¡ 1
d2

�
:

Plugging in our values for G;mS;mE; d1; d2, we find

work=(6.674 � 10¡11) � (1600) � (5.972 � 1024)
�

1
6371000

¡ 1
26371000

�
� 7.59 � 1010 joule:

Comment. You could also let x be the distance from the surface. That works as well if you adjust things
accordingly. (Do that as an exercise!)
Comment. If you choose d=6371 km in the law of attraction, set one mass to be the mass mE=5.972 �1024

kg of earth and the other to be 1 kg, then the resulting force is F = 6.674 � 10¡11 � 5.972 � 1024
(6.371 � 106)2 � 9.820 N,

which you have surely met in other class before. Note that this force is an approximation and depends on the
exact elevation (earth is not perfectly round). Usually, the value 9.81 N is used.

Example 48.

� What happens when we take the limit d2!1 in the previous example? What does that
mean physically?

� How does the previous problem change if the physical law of attraction was F =G mSmE

d
?

What happens now when we take the limit d2!1?
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Example 49. (extra) The Pyramid of Cheops, built about 2560 BC, has been the tallest man-
made structure in the world for over 3800 years. The pyramid was built to a height of 146m. Its
base is a square with each side 230m in length.

(a) The pyramid is made out of limestone (1 cubicmeter of limestone has a mass of 2.3 tonnes). Assuming
that the pyramid is solid, compute its mass (in tonnes) by using an integral.

(b) What was the mass of the pyramid when it was built to half its final height?

(c) The limestone blocks used usually have a mass of about 2.5 tonnes each. (Roughly) how many limestone
blocks does the pyramid consist of?

(d) Compute the (theoretical) total amount of work (in joule) that was required in lifting all the blocks from
the ground to their final position.

(e) Of course, the actual amount of work required was much higher; assume it was 50 times as high as the
theoretical amount you just calculated. Further, assume that an Egyptian worker could perform work of
about 2000 kilojoules per day. Based on these numbers and no holidays, how many workers would have
been needed to construct the Pyramid of Cheops in 20 years?
Comment. That's just for the building part! Sourcing and transport of the blocks and all other stuff not
included ... For perspective, assume a person consumes 2000 calories a day. That actually means 2000
kcal � 8400 kJ, and that is an upper limit on how much work they can perform on a daily basis.

Solution.

(a) Let us denote with x (in m) the vertical position in such a way that the tip is at x=0 and the base is at
x= 146. That way, the cross-section at x has a width of 230

146
x (so that the width is 0 when x=0, and

the width is 230 when x= 146). The volume of the pyramid isZ
0

146�230
146

x

�
2

dx=

�
230
146

�
2 1
3
x3
��������
0

146
=
1
3
2302 � 146� 2.57 � 106 m3

and hence its weight is
1
3
2302 � 146 � 2.3� 5.921 � 106 t:

(b) The volume of the pyramid wasZ
73

146�230
146

x

�
2

dx=

�
230
146

�
2 1
3
x3
��������
73

146
=

7
24

2302 � 146 m3

and hence its weight about 5.181 million tonnes.

(c) About 5.921 � 106
2.5

� 2.369 � 106, or 2.4 million, blocks of limestone.

(d) Recall that on earth's surface, one kg weighs about 9.81 N. The work therefore isZ
0

146�230
146

x

�
2

(146¡ x)2300 � 9.81dx� 2.120 � 1012 J:

(e) The building takes

50 � 2.120 � 1012
2,000,000

� 5.30 � 107

days of a man's work. To complete the work in 20 years

5.30 � 107
20 � 365 � 7260

workers would be needed.
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Notes for Lecture 10 Fri, 9/13/2024

Differential equations

Example 50. The differential equation dy

dx
= y is solved by y(x) = ex. It is also solved by

y(x)= 0 and y(x)= 7ex. Its general solution is y(x)=Cex where C can be any number.

Example 51. The initial value problem dy

dx
= y, y(0)= 1 has the unique solution y(x)= ex.

The fact that the exponential function solves these simple equations is at the root of why it is so important!

Example 52. The general solution to the differential equation (DE) dy

dx
=x2 is y(x)= 1

3
x3+C.

In general, computing the antiderivative of f(x) is the same as solving the (very special) DE dy

dx
= f(x).

Verifying if a function solves a DE

Given a function, we can always check whether it solves a DE!
We can just plug it into the DE and see if left and right side agree. This means that we can always check our
work as well as that we can verify solutions generated by someone else (or a computer algebra system) even
if we don't know the techniques for solving the DE.

Example 53. Consider the DE dy

dx
= y2.

(a) Is y(x)= 1

x
a solution?

(b) y(x)=¡ 1

x
a solution?

(c) Is y(x)=¡ 1

x+3
a solution?

(d) Is y(x)= 0 a solution?

(e) Is y(x)= 1 a solution?

Solution.

(a) We compute dy
dx
=¡ 1

x2
. On the other hand, y2= 1

x2
. Since dy

dx
and y2 are not equal, y= 1

x
is not a solution.

(b) We compute dy

dx
=

1

x2
. Since y2=

�
¡1

x

�
2
=

1

x2
, we have dy

dx
= y2. Hence, y=¡1

x
is a solution.

(c) We compute dy

dx
=

1

(x+3)2
. Since y2= 1

(x+3)2
as well, we conclude that y=¡ 1

x+3
is another solution.

(d) Since dy

dx
=0 and y2=0 as well, we again conclude that y=0 is another solution.

(e) Since dy

dx
=0 while y2=1, we conclude that y=1 is not a solution.

Comment. We will solve this DE shortly and find that the general solution is y(x)=¡ 1

x+C
(where the solution

y=0 corresponds to C!1).
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Example 54. Consider the DE y 00= y 0+6y.

(a) Is y(x)= e2x a solution?

(b) Is y(x)= e3x a solution?

Solution.

(a) We compute y 0=2e2x and y 00=4e2x.
Since y 0+6y=8e2x is different from y 00=4e2x, we conclude that y(x)= e2x is not a solution.

(b) We compute y 0=3e3x and y 00=9e3x.
Since y 0+6y=9e3x is equal to y 00=9e3x, we conclude that y(x)= e3x is a solution of the DE.

Separation of variables

The next example demonstrates the method of separation of variables to solve (a certain class
of) differential equations.

Example 55. Let us solve the DE dy

dx
= y2 by separation of variables.

Comment. Some of the next steps might feel questionable::: However, as illustrated above, we can always verify
afterwards that we indeed found a solution.

In the first step, we separate the variables, including the differentials dy and dx:

1
y2
dy=dx

[If the DE is of the form dy

dx
= g(x)h(y), then we would separate it as 1

h(y)
dy= g(x) dx.]

We then integrate both sides and compute the indefinite integrals:Z
1
y2
dy =

Z
dx

¡1
y

= x+C [we combine the two constants of integration into one]

If possible (like here) we solve the resulting equation for y:

y=¡ 1
x+C

Example 56. Find the general solution to dy

dx
=(1+ y)ex, y >¡1, using separation of variables.

Solution. We separate variables to get 1

1+ y
dy= exdx.

Integrating both sides, we find ln(1+ y)= ex+C. (Since y >¡1, we don't need to write lnj1+ y j.)
We now solve for y to get y(x)= ee

x+C ¡ 1.
Exercise. As an exercise in differentiation, verify that y(x) indeed solves the differential equation.
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Notes for Lecture 11 Mon, 9/16/2024

Slope fields, or sketching solutions to DEs

The next example illustrates that we can �plot� solutions to differential equations (it does not
matter if we are able to actually solve them).
Comment. This is an important point because �plotting� really means that we can numerically approximate
solutions. For complicated systems of differential equations, such as those used to model fluid flow, this is usually
the best we can do. Nobody can actually solve these equations.

Example 57. Consider the DE y 0=¡x/y.
Let's pick a point, say, (1;2). If a solution y(x) is passing through
that point, then its slope has to be y 0=¡1/2. We therefore draw
a small line through the point (1;2) with slope¡1/2. Continuing
in this fashion for several other points, we obtain the slope field
on the right.

With just a little bit of imagination, we can now anticipate the
solutions to look like (half)circles around the origin. Let us check

whether y(x)= r2¡x2
p

might indeed be a solution!

y 0(x)=
1

2

¡2x
r2¡ x2

p =¡x/y(x). So, yes, we actually found solutions!
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Separation of variables, cont'd

Example 58. Solve the DE y 0=¡x

y
.

Solution. Rewrite the DE as dy

dx
=¡x

y
.

Separate the variables to get ydy=¡xdx (in particular, we are multiplying both sides by dx).
Integrating both sides, we get

R
ydy=

R
¡xdx.

Computing both integrals results in 1

2
y2=¡1

2
x2+C (we combine the two constants of integration into one).

Hence x2+ y2=D (with D=2C).
This is an implicit form of the solutions to the DE. We can make it explicit by solving for y. Doing so, we find
y(x)=� D¡x2

p
(choosing+ gives us the upper half of a circle, while the negative sign gives us the lower half).

Comment. The step above where we break dy

dx
apart and then integrate may sound sketchy!

However, keep in mind that, after we find a solution y(x), even if by sketchy means, we can (and should!) verify
that y(x) is indeed a solution by plugging into the DE. We actually already did that in the previous example!

Example 59. Solve the IVP y 0=¡x

y
, y(0)=¡3.

Comment. Instead of using what we found earlier in Example 58, we start from scratch to better illustrate the
solution process (and how we can use the initial condition right away to determine the value of the constant of
integration).

Solution. We separate variables to get ydy=¡xdx.
Integrating gives 1

2
y2=¡1

2
x2+C, and we use y(0)=¡3 to find 1

2
(¡3)2=0+C so that C =

9

2
.

Hence, x2+ y2=9 is an implicit form of the solution.

Solving for y, we get y=¡ 9¡ x2
p

(note that we have to choose the negative sign so that y(0)=¡3).
Comment. Note that our solution is a local solution, meaning that it is valid (and solves the DE) locally around
x=0 (from the initial condition). However, it is not a global solution because it doesn't make sense outside of
x in the interval [¡3; 3].
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Example 60. Solve the IVP y 0=¡x

y
, y(0)=2.

Solution. Proceeding as in the previous example, we find y(x)= 4¡x2
p

.

Example 61. Solve the initial value problem dy

dx
=xy, y(0)= 3.

Solution. We separate variables to get 1
y
dy=xdx.

Integrating both sides, we find ln(y) = 1

2
x2+ C. (Since y = 3 in the initial condition, we don't need to write

lnjy j because we have y > 0 around the initial condition.)
We can then find C by using the values x=0, y=3 from the initial condition: ln(3)= 1

2
�02+C. So, C= ln(3).

We now solve ln(y)= 1

2
x2+ ln(3) for y to get y(x)= e

1
2
x2+ln(3)

=3e
1
2
x2.

Alternatively. We could have also first solved for y and then determined C with the same result.

Which differential equations can we actually solve using separation of variables?

� A general DE of first order is typically of the form dy

dx
= f(x; y).

For instance, dy
dx
= sin(xy)¡ x2y.

Comment. First order means that only the first derivative of y shows up. The most general form of a
DE of first order is F (x; y; y 0)= 0 but we can usually solve for y 0 to get to the above form.

� The ones we can solve are separable equations, which are of the form dy

dx
= g(x)h(y).

Example. The equation dy

dx
= y¡x (although simple) is not separable.

Example. The equation dy

dx
= ey¡x is separable because we can write it as dy

dx
= ey e¡x.
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A very simple model of population growth

If y(t) is the size of a population (eg. of bacteria) at time t, then the rate of change dy

dt
might,

from biological considerations, be (nearly) proportional to y(t).
More down to earth, this is just saying �for a population 5 times as large, we expect 5 times as many babies�.
Say, we have a population of P = 100 and P 0= 3, meaning that the population changes by 3 individuals per
unit of time. By how much do we expect a population of P = 500 to change? (Think about it for a moment!)
Without further information, we would probably expect the population of P = 500 to change by 5 � 3 = 15
individuals per unit of time, so that P 0=15 in that case. This is what it means for P 0 to be proportional to P .
In formulas, it means that P 0/P is constant or, equivalently, that P 0= kP for a proportionality constant k.
Comment. �Population� might sound more specific than it is. It could also refer to rather different populations
such as amounts of money (finance) or amounts of radioactive material (physics).

For instance, thinking about an amount P (t) of money in a bank account at time t, we would also expect dP
dt

(the money per time that we gain from receiving interest) to be proportional to P (t).

The corresponding mathematical model is described by the DE dy

dt
=ky where k is the constant

of proportionality.
The general solution to this DE is y(t)=Cekt. (Solve it yourself using separation of variables!)
Hence, mathematics tells us that populations satisfying the assumption from biology necessarily exhibit expo-
nential growth.

Example 62. Let y(t) describe the size of a population at time t. Suppose y(0) = 100 and
y(1)= 300. Under the exponential model of population growth, find y(t).

Solution. y(t) solves the DE dy

dt
= ky and therefore is of the form y(t)=Cekt.

We now use the two data points to determine both C and k.

Cek�0=C = 100 and Cek= 100ek= 300. Hence k= ln(3) and y(t)= 100eln(3)t= 100 � 3t.

Example 63. A yeast culture, with initial mass 12 g, is assumed to exhibit exponential growth.
After 10 min, the mass is 15 g. What is the mass after t min?

Solution. Let y(t) be the mass in g after t min. y(t) solves the DE dy

dt
=ky and so is of the form y(t)=Cekt.

We now use that y(0)= 12 and y(10)= 15 to determine both C and k.

Cek�0=C = 12 and Ce10k= 12e10k= 15. Hence k= 1

10
ln
�
5

4

�
and y(t)= 12e

1
10ln

¡ 5
4

�
t
= 12 (5/4)t/10.

Example 64. Just to give an indication of how the modelling can be refined, let us suppose we
want to take limited resources into account, so that there is a maximum sustainable population
size M . This situation could be modelled by the logistic equation

dy
dt

= ky
�
1¡ y

M

�
:

Note that if y is small (compared to M), then 1¡ y

M
� 1, so dy

dt
� ky, and we are back at our

previous model. However, once the population is getting close to M then 1¡ y

M
� 0, so dy

dt
� 0,

which means that the population does not continue to grow.
Main challenge of modeling: A model has to be detailed enough to resemble the real world, yet simple enough
to allow for mathematical analysis.
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Notes for Lecture 12 Wed, 9/18/2024

Example 65. (review) Solve the initial value problem dy

dx
=xy, y(0)= 3.

Solution. We separate variables to get 1
y
dy=xdx.

Integrating both sides, we find ln(y) = 1

2
x2+ C. (Since y = 3 in the initial condition, we don't need to write

lnjy j because we have y > 0 around the initial condition.)
We can then find C by using the values x=0, y=3 from the initial condition: ln(3)= 1

2
�02+C. So, C= ln(3).

We now solve ln(y)= 1

2
x2+ ln(3) for y to get y(x)= e

1
2
x2+ln(3)

=3e
1
2
x2.

Alternatively. We could have also first solved for y and then determined C with the same result.

Logarithms

Review. ln(x)= loge(x) is the inverse function of ex. In other words, for all real x,

ln(ex)=x:

Similarly, eln(x)=x for all x> 0.
Likewise. loga(x) is the inverse function of ax (where a is called the base).

� d
dx

ln(x)= 1
x

Why? Start with eln(x)= x and differentiate both sides to get eln(x) � ln0(x) = 1. It therefore follows
that ln0(x)= 1

eln(x)
=

1

x
.

Note. We also have
d
dx

ln(¡x)= 1
¡x � (¡1)=

1
x
for x< 0. Together, this implies the next entry.

�
Z
1
x
dx= lnjxj+C

The following observation allows us to convert other bases to the natural base e:

(other bases) ax= eln(a)x and loga(x)=
ln(x)
ln(a) .

Why? ax=eln(a)x follows be writing ax=eln(a
x)=exln(a). Can you see how loga(x)=

ln(x)
ln(a)

follows from this?

Alternatively, the defining property of loga is that loga(ax) = x. Because ln(ax) = x ln(a) we see that
f(x)=

ln(x)
ln(a)

also has the property that f(ax)=x.

Example 66. Compute
d
dx

loga(x).

Solution. It follows from loga(x)=
ln(x)
ln(a)

that d
dx

loga(x)=
1

xln(a)
.

Example 67. Compute
d
dx
2x and

Z
2xdx.

Solution. Write 2x = eln(2
x) = exln(2) to see that d

dx
2x = ln(2) exln(2) = ln(2) 2x and, likewise,

Z
2xdx =

1
ln(2)

exln(2)+C=
2x

ln(2)
+C.
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Example 68. Rewrite 2ln(x) as a power of x.
Solution. We use the same �trick� as in the previous example (applying eln(x) to the expression) to get

2ln(x)= eln(2
ln(x))= eln(x)ln(2)=(eln(x))ln(2)= xln(2):

Alternatively. Since ln(x)= ln(2)log2(x), we have 2ln(x)=2ln(2)log2(x)=(2log2(x))ln(2)=xln(2).

Example 69. Determine
Z
2ln(x)

x2
dx.

Solution. By the previous example,Z
2ln(x)

x2
dx=

Z
xln(2)¡2dx=

1
ln(2)¡ 1x

ln(2)¡1+C:

Example 70. Determine
Z
(lnx)4

3x
dx.

Solution. We substitute u= ln(x) in which case du= 1

x
dx (so that the 1

x
in the integrand will cancel out), to getZ

(lnx)4

3x
dx=

1
3

Z
u4du=

1
15
u5+C =

1
15
(lnx)4+C:

Example 71. Determine
Z

ln(lnx)
x lnx

dx.

Solution. We substitute u= ln(x) in which case du= 1

x
dx (so that the 1

x
in the integrand will cancel out). SinceZ

ln(lnx)
x lnx

dx=

Z
lnu
u
du:

In the new integral, we substitute v= ln(u) with dv= 1

u
du to getZ

ln(lnx)
x lnx

dx=

Z
lnu
u
du=

Z
vdv=

1
2
v2+C=

1
2
(lnu)2+C =

1
2
(ln(lnx))2+C:

Example 72. Determine
Z
0

2

3¡xdx.

Solution. Write 3¡x= eln(3
¡x)= e¡xln(3) to see thatZ

0

2

3¡xdx=

�
¡ 1
ln(3)

e¡xln(3)
�
0

2

=

�
¡ 1
ln(3)

3¡x
�
0

2

=
1

ln(3)
(1¡ 3¡2)= 8

9ln(3)
:

Example 73. Determine
Z

log3(x)
x

dx.

Solution. Since log3(x)=
ln(x)
ln(3)

, we find that
Z

log3(x)
x

dx=
1

ln(3)

Z
ln(x)
x

dx.

We now substitute u= ln(x) in which case du= 1

x
dx (so that the 1

x
in the integrand will cancel out). SinceZ

ln(x)
x

dx=

Z
udu=

1
2
u2+C =

1
2
(ln(x))2+C;

we get that
Z

log3(x)
x

dx=
1

ln(3)

Z
ln(x)
x

dx=
1

2ln(3)
(ln(x))2+B (where B=

C

ln(3)
is some constant).
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Notes for Lecture 13 Fri, 9/20/2024

Hyperbolic functions

The hyperbolic cosine and sine are cosh(x)= ex+ e¡x

2
and sinh(x)= ex¡ e¡x

2
.

The remaining hyperbolic trigonometric functions are built from these two as expected.

For instance, tanh(x)= sinh(x)
cosh(x)

.

-2 -1.5 -1 -0.5 0.5 1 1.5 2

-3

-2

-1

1

2

3

4

cosh(x)
sinh(x)

We will later see that cosh(x) = cos(ix) and sinh(x) =¡i sin(ix). For now observe and verify
the following properties that reflect similar properties of cos and sin:

� cosh0(x)= sinh(x)
sinh0(x)= cosh(x)

� cosh(¡x)= cosh(x) (that is, cosh is an even function)

sinh(¡x)=¡sinh(x) (that is, sinh is an odd function)

� cosh2(x)¡ sinh2(x)=1
This property explains the name hyperbolic functions: the points (x; y) = (cosh(t); sinh(t)) produce
the unit hyperbola x2 ¡ y2 = 1. This is analogous to how cosine and sine parametrize the circle: in
that case, the points (x; y)= (cos(t); sin(t)) produce the unit circle x2+ y2=1.
Comment. Circles and hyperbolas are conic sections (as are ellipses and parabolas).

Comment. Plot the unit hyperbola. Then compare the graph to y= 1

x
. (This is a hyperbola, too!)

Comment. Hyperbolic geometry plays an important role, for instance, in special relativity:
https://en.wikipedia.org/wiki/Hyperbolic_geometry

� ex= cosh(x)+ sinh(x)
This is a �cheap� version of Euler's identity eix= cos(x)+ i sin(x), which we will look at soon.
In both cases, ex and eix are broken up into their even part and odd part.

Example 74. Rewrite in terms of exponentials and simplify as much as possible:

(a) 4sinh(lnx)

(b) cosh(3x)¡ sinh(3x)
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Solution.

(a) 4sinh(lnx)= 4 � e
lnx¡ e¡lnx

2
=2

�
x¡ 1

x

�

(b) cosh(3x)¡ sinh(3x)= e3x+ e¡3x

2
¡ e3x¡ e¡3x

2
= e¡3x

Example 75. Determine the following:

(a)
d
dx
4cosh(3x)

(b)
Z
4cosh(3x)dx

(c)
d
dx

ln(sinh(x2+3x))

Solution.

(a) d
dx
4cosh(3x)= 12sinh(3x)

(b)
Z
4cosh(3x)dx= 4

3
sinh(3x)+C

(c) d
dx

ln(sinh(x2+3x))=
1

sinh(x2+3x)
� cosh(x2+3x) � 2x

Since the hyperbolic functions are defined in terms of the exponential function, it is not surprising
that their inverse functions can be expressed in terms of logarithms. We leave it at the following
example.

Example 76. Express sinh¡1 in terms of logarithms.

Solution. We start with y= sinh(x)= ex¡ e¡x
2

and need to solve for x.

Write u= ex so that the equation becomes 2y=u¡ 1

u
.

Multiplying with u and rearranging, we obtain u2¡ 2yu¡ 1=0 which is a quadratic equation in u.

Using the quadratic formula, we find u= 2y� 4y2+4
p
2

= y � y2+1
p

. Note that u= ex> 0 so that we have
to choose the + sign here.

Since u= ex, this implies x= ln(u)= ln
�
y+ y2+1

p �
.

In summary, we have found that sinh¡1(x)= ln
�
x+ x2+1

p �
.

Comment. It follows from sinh(x) = ¡i sin(ix) that arcsin = sin¡1 can be similarly expressed in terms of
logarithms. However, we will now have the imaginary i in that formula.

Example 77. Find the length of the curve y= coshx from x=¡2 to x=2.
Solution. The length isZ

¡2

2

1+

�
dy
dx

�
2

s
dx =

Z
¡2

2

1+ sinh2(x)
q

dx=

Z
¡2

2

cosh(x)dx

=
h
sinh(x)

i
¡2

2
= sinh(2)¡ sinh(¡2)= 2sinh(2)= e2¡ e¡2� 7.254:

Here, we used that 1+ sinh2(x)= cosh2(x) as we had observed earlier (in the form cosh2(x)¡ sinh2(x)= 1).

Also note that cosh(x)> 0 so that we get cosh2(x)
q

=+cosh(x).
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Notes for Lecture 14 Mon, 9/23/2024

Spotlight on the exponential function

Euler's constant, the natural base

Euler's constant e = 2.7182818284590452::: is unavoidable in Calculus. For instance, starting
with only division (which is all we need to define the function 1/x), we obtainZ

1
x
dx= logejxj+C:

Likewise, ex is the only exponential whose derivative is itself. More professionally speaking, we
have the following characterization of the exponential function:

(exponential function) ex is the unique solution to the IVP y 0= y, y(0)= 1.

Comment. Note that, for instance, d

dx
2x= ln(2) 2x. (This follows from 2x= eln(2

x)= exln(2).)
Since ln= loge, this means that we cannot avoid the natural base e�2.718 even if we try to use another base.

The following is a preview of a series (infinite sum):

(preview of Taylor series) From the IVP above, it follows that ex=1+x+ x2

2!
+ x3

3!
+ :::.

This is the Taylor series for ex at x=0. More on these later!
Important note. We can indeed construct this infinite sum directly from y 0 = y and y(0) = 1. To see this,

observe how each term, when differentiated, produces the term before it. For instance, d

dx

x3

3!
=
x2

2!
.

Example 78. Suppose we have capital 1 and that, annually, we are receiving 1= 100% interest.
How much capital do we have at the end of a year, if 1

n
interest is paid n times a year?

[For instance, n= 12 if we receive monthly interest payments.]

Solution. At the end of the year, we have
�
1+

1

n

�n
.

For instance. Here are a few values spelled out:

n=1:

�
1+

1
n

�n
=2

n=4:

�
1+

1
n

�n
= 2.4414:::

n= 12:
�
1+

1
n

�n
= 2.6130:::

n= 100:
�
1+

1
n

�n
= 2.7048:::

n= 365:
�
1+

1
n

�n
= 2.7145:::

n= 1000:
�
1+

1
n

�n
= 2.7169:::

n!1:

�
1+

1
n

�n
! e= 2.71828:::

It is natural to wonder what happens if interest payments are made more and more frequently. As the entry for
n!1 shows, if we keep increasing n, then we will get closer and closer to e= 2.7182818284590452::: in our
bank account after one year.

Challenge. Can you evaluate the limit lim
n!1

�
1+

1
n

�n
using your Calculus I skills?
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Euler's identity

Let's recall some basic facts about complex numbers:

� Every complex number can be written as z=x+ iy with real x; y.

� Here, the imaginary unit i is characterized by solving x2=¡1.
Important observation. The same equation is solved by ¡i. This means that, algebraically, we cannot
distinguish between +i and ¡i.

� The conjugate of z=x+ iy is z�=x¡ iy.
Important comment. Since we cannot algebraically distinguish between �i, we also cannot distinguish
between z and z�. That's the reason why, in problems involving only real numbers, if a complex number
z=x+ iy shows up, then its conjugate z�=x¡ iy has to show up in the same manner. With that in
mind, have another look at the examples below.

� The real part of z=x+ iy is x and we write Re(z)=x.

Likewise the imaginary part is Im(z)= y.

Observe that Re(z)= 1

2
(z+ z�) as well as Im(z)= 1

2i
(z¡ z�).

Theorem 79. (Euler's identity) eix= cos(x)+ i sin(x)

Proof. Observe that both sides are the (unique) solution to the IVP y 0= iy, y(0)= 1.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.] �

On lots of T-shirts. In particular, with x = �, we get e�i=¡1 or ei� + 1 = 0 (which connects the five
fundamental constants).

Proof. Observe that both sides are the (unique) solution to the IVP y 0= iy, y(0)= 1.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.] �

Comment. It follows that cos(x)=Re(eix)= 1

2
(eix+ e¡ix) and sin(x)= Im(eix)= 1

2i
(eix¡ e¡ix).

In particular, we see from here that cos(x) = cosh(ix) and i sin(x) = sinh(ix) (or, equivalently, cosh(x) =
cos(ix) and sinh(x)=¡i sin(ix)).

Example 80. Where do trig identities like sin(2x)=2cos(x)sin(x) or sin2(x)= 1¡ cos(2x)
2

(and
infinitely many others you have never heard of!) come from?

Short answer: they all come from the simple exponential law ex+y= exey.
Let us illustrate this in the simple case (ex)2= e2x. Observe that

e2ix = cos(2x)+ i sin(2x)
eixeix = [cos(x)+ i sin(x)]2= cos2(x)¡ sin2(x)+ 2i cos(x)sin(x):

Comparing imaginary parts (the �stuff with an i�), we conclude that sin(2x)= 2cos(x)sin(x).
Likewise, comparing real parts, we read off cos(2x)= cos2(x)¡ sin2(x).

(Use cos2(x)+ sin2(x)= 1 to derive sin2(x)= 1¡ cos(2x)
2

from the last equation.)

Challenge. Can you find a triple-angle trig identity for cos(3x) and sin(3x) using (ex)3= e3x?
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Example 81. Which trig identity hides behind ei(x+y)= eixeiy?
Solution. We observe that

ei(x+y) = cos(x+ y)+ i sin(x+ y)

eixeiy = [cos(x)+ i sin(x)][cos(y)+ i sin(y)]
= cos(x)cos(y)¡ sin(x)sin(y)+ i(cos(x)sin(y)+ sin(x)cos(y)):

Comparing real and imaginary parts, we conclude that

� cos(x+ y)= cos(x)cos(y)¡ sin(x)sin(y) and

� sin(x+ y)= cos(x)sin(y)+ sin(x)cos(y).

Example 82. Which trig identity hides behind eix e¡ix=1?
Solution. Note that

eix e¡ix = [cos(x)+ i sin(x)][cos(¡x)+ i sin(¡x)]= [cos(x)+ i sin(x)][cos(x)¡ i sin(x)]
= cos2x+ sin2x:

Hence, eix e¡ix=1 translates into Pythagoras' identity cos2x+ sin2x=1.
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Notes for Lecture 15 Fri, 9/27/2024

Review. (from midterm exam) Here are two ways to determine
Z
dx
2x

. Which is correct?

(a)
Z
dx
2x

= 1
2

Z
dx
x
= 1
2
lnjxj+C

(b) We substitute u=2x (so that du=2dx) to get:Z
dx
2x

=
Z 1

2
du
u

= 1
2
lnjuj+C = 1

2
lnj2xj+C

Solution. Both are correct! The answers look different but they only differ by a constant because

1
2
lnj2xj= 1

2
ln(2jxj)= 1

2
(ln(2)+ lnjxj):

Integration by parts

If we integrate both sides of the product rule, we obtain the following:

(fg)0 = f 0g+ fg 0

 antiderivative
f(x)g(x) =

Z
f 0(x)g(x)dx+

Z
f(x)g 0(x)dx

If we then solve for one of the two integrals, we get:

(integration by parts) Z
f(x)g 0(x)dx= f(x)g(x)¡

Z
f 0(x)g(x)dx

The following shorthand is very common as well:Z
udv=uv¡

Z
vdu

Here, u= f(x), v= g(x) so that du= f 0(x)dx and dv= g0(x)dx.

Example 83. Determine
Z
x cos(x) dx.

Solution. We choose f(x)=x and g0(x)= cos(x), so that g(x)= sin(x) (note that we are free to choose the
simplest antiderivative for g(x)), to getZ

x cos(x) dx= x sin(x)¡
Z
1 � sin(x) dx=x sin(x)+ cos(x)+C:

Example 84. Determine
Z
xexdx.

Solution. We choose f(x)= x and g 0(x)= ex, so that g(x)= ex, to getZ
xexdx= xex¡

Z
1 � exdx= xex¡ ex+C=(x¡ 1)ex+C:
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Example 85. Determine
Z

ln(x) dx.

Solution. We choose f(x)= ln(x) and g 0(x)= 1, so that g(x)= x, to getZ
ln(x) � 1dx= ln(x) � x¡

Z
1
x
� xdx=xln(x)¡ x+C:

Example 86. Substitute u= ln(x) in the previous integral. What do you get?

Solution. If u= ln(x) then du= 1

x
dx so that dx= xdu= eudu (in the last step, we used that x= eu).

We therefore get
Z
ln(x) dx=

Z
ueu du.

By Example 84 we know
Z
ueu du=(u¡ 1)eu+C so that

Z
ln(x) dx=

Z
ueu du=(u¡ 1)eu+C=(ln(x)¡ 1)eln(x)+C =(ln(x)¡ 1)x+C;

which matches what we obtained in Example 85.
Comment. We can also start by writing x = eu so that we immediately get dx = eudu. It depends on the
integral, which of the two approaches is algebraically simpler.
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Notes for Lecture 16 Mon, 9/30/2024

Review. By integrating the product rule, we get the formula for integration by parts:Z
f(x)g 0(x)dx= f(x)g(x)¡

Z
f 0(x)g(x)dx:

Example 87. (again) Determine
Z
xexdx.

� To evaluate the integral, we should choose f(x) = x and g 0(x) = ex, because f 0(x)
becomes easier while g(x) stays the same. Do it!

� If, on the other hand, we decide to choose f(x)= ex and g 0(x)=x, then we obtainZ
xexdx= 1

2
x2 ex¡

Z
1
2
x2exdx:

While certainly correct, we actually ended up with a more difficult integral.

[On the other hand, because we know
R
xexdx, this means we now also know

R
x2 exdx.]

Example 88. Determine
Z
0

1

x2 e3xdx.

Solution. We do integration by parts with f(x)=x2 and g 0(x)=e3x so that f 0(x)=2x and g(x)= 1

3
e3x to getZ

x2 e3xdx=
1
3
x2e3x¡ 2

3

Z
xe3xdx:

We now do integration by parts again with f(x)=x and g 0(x)= e3x so that f 0(x)=1 and g(x)= 1

3
e3x to getZ

xe3xdx=
1
3
xe3x¡ 1

3

Z
e3xdx=

1
3
xe3x¡ 1

9
e3x:

Taken together, this meansZ
x2 e3xdx=

1
3
x2e3x¡ 2

3

�
1
3
xe3x¡ 1

9
e3x
�
=

�
1
3
x2¡ 2

9
x+

2
27

�
e3x:

In particular, Z
0

1

x2 e3xdx=

��
1
3
x2¡ 2

9
x+

2
27

�
e3x
�
0

1

=

�
1
3
¡ 2
9
+

2
27

�
e3¡ 2

27
=

5
27
e3¡ 2

27
:

Alternatively. While doing integration by parts, we can carry the bounds along. For instance, for the first step,Z
0

1

x2 e3xdx=

�
1
3
x2e3x

�
0

1

¡ 2
3

Z
0

1

xe3xdx=
1
3
e3¡ 2

3

Z
0

1

xe3xdx:

For practice, do the second step likewise to get the same final answer as before!
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Example 89. Determine
Z
ex cos(x) dx.

Solution. We will need to integrate by parts twice. First, let f(x) = cos(x) and g 0(x) = ex so that f 0(x) =
¡sin(x) and g(x)= ex (the other way around works as well�see below!) to getZ

ex cos(x) dx= ex cos (x)+
Z
ex sin(x) dx:

The new integral is of the same level of difficulty, so it might seem like we haven't gained anything. But don't
give up yet! Instead, integrate by parts again with f(x)= sin(x) and g0(x)= ex to arrive atZ

ex cos(x) dx= ex cos (x)+
Z
ex sin(x) dx= ex cos (x)+ exsin(x)¡

Z
ex cos(x) dx:

We can now solve for
Z
ex cos(x) dx and find

Z
ex cos(x) dx= 1

2
(ex sin (x)+ excos(x)).

Solution. (variation) We proceed as before but now let f(x)= ex and g 0(x)= cos(x) to getZ
ex cos(x) dx= ex sin (x)¡

Z
ex sin(x) dx:

Again, we once more integrate by parts: choosing f(x)= ex and g0(x)= sin(x), we arrive atZ
ex cos(x) dx= ex sin (x)¡

Z
ex sin(x) dx= ex sin (x)+ excos(x)¡

Z
ex cos(x) dx:

As before, we can then solve for
Z
ex cos(x) dx to find

Z
ex cos(x) dx= 1

2
(ex sin (x)+ excos(x)).

We next discuss integrals of products of trig functions. The following is an example that we are
already familiar with:

Example 90. (review/preview)
Z

sin�(x)cos(x) dx (with �=/ ¡1)

Solution. We substitute u= sin(x), because then du= cos(x) dx, to getZ
sin�(x)cos(x) dx=

Z
u�du=

1
�+1

u�+1+C=
sin�+1(x)
�+1

+C:
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Notes for Lecture 17 Wed, 10/2/2024

Review. Recall that dg(x) = g 0(x)dx (since d

dx
g(x) = g 0(x)). Integration by parts therefore is

often written asZ
f(x)dg(x)= f(x)g(x)¡

Z
g(x)df(x); or

Z
udv=uv¡

Z
vdu:

In the latter short form, we have set u= f(x) and v= g(x).

Trigonometric integrals

The following example illustrates that we somtimes have choices when integrating:

Example 91.
Z

sin(x)cos(x) dx

Solution. (integration by parts) Integrating by parts with f(x)= sin(x), g 0(x)=cos(x), g(x)= sin(x), we getZ
sin(x)cos(x) dx= sin2(x)¡

Z
cos(x)sin(x) dx;

from which we conclude that
Z
sin(x)cos(x) dx= 1

2
sin2(x)+C.

Solution. (substitution) Substitute u= sin(x), because du= cos(x) dx, to getZ
sin(x)cos(x) dx=

Z
udu=

1
2
u2+C=

1
2
sin2(x)+C:

Solution. (trig identity) Since sin(2x)= 2cos(x)sin(x), we haveZ
sin(x)cos(x) dx= 1

2

Z
sin(2x)dx=¡1

4
cos(2x)+C:

Important comment. Note that 1
2
sin2(x)=/ ¡1

4
cos(2x) (for instance, plug in x=0 to see that). However, the

two functions are indeed equal up to a constant (namely, 1
2
sin2(x) =¡1

4
cos(2x) + 1

4
) as we can see from the

trig identity sin2(x)= 1¡ cos(2x)
2

.

Example 92.
Z

sinm(x)cos3(x) dx (with m=/ ¡1;¡3)

Solution. We substitute u= sin(x), because du= cos(x) dx, to getZ
sinm(x)cos3(x) dx =

Z
umcos2(x) du=

Z
um(1¡ sin2(x)) du=

Z
um(1¡u2)du

=
um+1

m+1
¡ um+3

m+3
+C =

sinm+1(x)
m+1

¡ sinm+3(x)
m+3

+C:
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The strategy in the previous problem works whenever we have an odd power of cosine:

Example 93. Describe how we can determine
Z

sinm(x)cos2k+1(x) dx.

Solution. Again, we substitute u= sin(x), because du= cos(x) dx, to getZ
sinm(x)cos2k+1(x) dx =

Z
umcos2k(x) du=

Z
um(1¡ sin2(x))k du=

Z
um(1¡u2)kdu:

For a given integer k> 0, we can now multiply out the term (1¡ u2)k. Each resulting term (after multiplying
with um) can then be integrated using the power rule (as in the previous example).

Extrapolating this strategy, we can integrate the following products of trigonometric function:

�
Z

sinm(x)cosn(x)dx, with n=2k+1 odd, can be evaluated by substituting u= sin(x).

See previous example!

�
Z

sinm(x)cosn(x)dx, withm odd, can be likewise evaluated by substituting u=cos(x).

�
Z

sinm(x)cosn(x) dx, with both m;n even, can be reduced via

sin2(x)= 1¡ cos(2x)
2

; cos2(x)= 1+ cos(2x)
2

:

[Then, multiply out the integrand. The resulting integrals have smaller exponents, and we (recursively)
apply our strategy to each of them (if the 2x bothers you, substitute u=2x).]

Example 94. Determine
Z

cos2(x)dx.

Solution. (trig identity) Since both exponents are even (the exponent of sin(x) is 0, which is even), we use

the trig identity cos2(x)= 1+ cos(2x)
2

:Z
cos2(x)dx=

Z
1+ cos(2x)

2
dx=

1
2
x+

1
4
sin(2x)+C:

Solution. (integration by parts�only for practice) We choose f(x) = cos(x) and g0(x) = cos(x) (so that
g(x)= sin(x)) to getZ

cos2(x)dx= cos(x)sin(x)+
Z
sin2(x)dx= cos(x)sin(x)+

Z
(1¡ cos2(x))dx:

Note that our integral appears on both sides. Solving for it, we conclude thatZ
cos2(x)dx= 1

2
(cos(x)sin(x)+x)+C:

Our final answer looks different at first glance but is the same because sin(2x)= 2cos(x)sin(x).
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Example 95. Determine
Z

cos2(x)sin2(x)dx.

Solution. Since both exponents are even, we use the trig identities cos2(x)= 1+ cos(2x)
2

, sin2(x)= 1¡ cos(2x)
2

:Z
cos2(x)sin2(x)dx =

Z
1+ cos(2x)

2
� 1¡ cos(2x)

2
dx=

1
4

Z
(1¡ cos2(2x))dx= 1

4
x¡ 1

4

Z
cos2(2x)dx:

We now use cos2(x)= 1+ cos(2x)
2

again (or we could use Example 94) to findZ
cos2(2x)dx=

Z
1+ cos(4x)

2
dx=

1
2
x+

1
8
sin(4x)+B:

Combined, we have (we rename the constant of integration to absorb the factor of ¡1/4)Z
cos2(x)sin2(x)dx= 1

4
x¡ 1

4

�
1
2
x+

1
8
sin(4x)

�
+C=

1
8
x¡ 1

32
sin(4x)+C:
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Notes for Lecture 18 Fri, 10/4/2024

One exponent may also be negative (in the next example, we integrate [sin(x)]1 [cos(x)]¡1).

Example 96. Determine
Z

tan(x) dx.

Solution.
Z
tan(x) dx=

Z
sin(x)
cos(x)

dx, so we substitute u= cos(x) (then du=¡sin(x)dx) to get

Z
tan(x) dx=

Z
sin(x)
cos(x)

dx=¡
Z
du
u
=¡lnjuj+C =¡lnjcos(x)j+C = lnjsec(x)j+C:

Solution. (harder�only for practice) For some exercise in substituting, we can also substitute u= sin(x) (but
can you explain how we can tell beforehand that u= cos(x) should be the better choice?). Then du= cos(x)dx
or, equivalently, dx= 1

cos(x)
du, so that we getZ

tan(x) dx=
Z

sin(x)
cos(x)

dx=

Z
u

cos2(x)
du=

Z
u

1¡ sin2(x)
du=

Z
u

1¡u2du:

We now substitute v=1¡u2 (so that dv=¡2udu) to getZ
tan(x) dx =

Z
u

1¡u2du=¡
1
2

Z
dv
v
=¡1

2
lnjv j+C =¡1

2
lnj1¡u2j+C

= ¡1
2
lnj1¡ sin2(x)j+C =¡1

2
lnjcos2(x)j+C =¡lnjcos(x)j+C

as earlier.

Trigonometric substitutions

Example 97. Everybody knows that cos2x+ sin2x=1.
Divide both sides by cos2x to find 1+ tan2x= sec2x.

Likewise, dividing by sin2x, we find cot2x+1=csc2(x). However, note that in this identity we cannot have x=0.

if you see try substituting because

a2¡x2 (especially a2¡x2
p

) x= a sin� a2¡ (a sin�)2= a2cos2�

a2+x2 (especially a2+x2
p

) x= a tan� a2+(a tan�)2= a2sec2�= a2

cos2�
and, somewhat less importantly:

x2¡ a2 (especially x2¡ a2
p

) x= a sec� (a sec�)2¡ a2= a2tan2�

Note that (by completing the square and doing a simple linear substitution), you can put any quadratic term
ax2+ bx+ c into one of these three cases (for instance, x2+ 2x+3= (x+ 1)2+2= u2+ 2 with the simple
linear substitution u= x+1).
This is why trigonometric substitution occurs frequently for certain kinds of integrals.
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Example 98. Determine
Z

1
1¡x2

p dx.

Solution. We substitute x= sin� (with � 2 [¡�/2; �/2] so that �= arcsin(x)) because then 1¡ x2= cos2�.
Since dx= cos�d�, we findZ

dx

1¡x2
p =

Z
cos�d�
1¡ sin2�

p =

Z
cos�d�
cos2�

p =

Z
1d�= �+C = arcsin(x)+C:

[Note that in order to conclude cos2�
p

= cos�, we used that � 2 [¡�/2; �/2] and that cos�> 0 for these values of �.]

On the other hand. Let's compute the derivative of arcsin(x) directly from its definition as the inverse function
of sin(x): take the derivative of both sides of sin(arcsin(x))=x to get cos(arcsin(x))arcsin0(x)= 1. Hence

arcsin0(x)= 1
cos(arcsin(x))

=
1

1¡ sin2(arcsin(x))
p =

1

1¡x2
p :

Comment. Because the role of cos and sin in cos2�+ sin2�=1 is symmetric, we can also substitute x= cos�.
Do it! When comparing final answers, keep in mind that

arccos(x)= �
2
¡ arcsin(x):

This reflects the relationship cos(�)= sin
¡ �
2
¡ �
�
.
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Notes for Lecture 19 Mon, 10/7/2024

Example 99. Determine
Z

1¡x2
p

dx.

Solution. We substitute x= sin� (with � 2 (¡�/2; �/2) so that �= arcsin(x)) because then 1¡ x2= cos2�.
Since dx= cos�d�, we findZ

1¡ x2
p

dx=

Z
cos2�d�= :::by parts:::= 1

2
(cos(�)sin(�)+ �)+C =

1
2

�
x 1¡x2
p

+ arcsinx
�
+C:

See Example 94 for the integration by parts. In the final step, we used cos�= 1¡ sin2�
p

= 1¡x2
p

(instead
of cos(arcsin(x))).

Comment. Note that
Z
0

1

1¡x2
p

dx is the area of a quarter of the unit circle (and so has to be �/4). Using

the antiderivative we just computed, we indeed find (since sin(�/2)= 1 we have arcsin(1)=�/2)

Z
0

1

1¡ x2
p

dx=

"
arcsinx+ x 1¡x2

p
2

#
0

1

=

�

2
+0

2
¡ 0+0

2
=
�
4
:

Example 100. Determine
Z

1
t2 t2¡ 4
p dt.

Solution. We substitute t=2sec� because then t2¡ 4=4(sec2�¡ 1)= 4tan2�.

Since dt

d�
=

d

d�
2sec�=2sec� tan� (you can work this out from sec�= 1

cos�
), we getZ

1

t2 t2¡ 4
p dt=

Z
1

4sec2� 4tan2�
p 2sec�tan�d�= 1

4

Z
1

sec�
d�=

1
4

Z
cos�d�= 1

4
sin�+C:

Our final step consists in simplifying sin� given that t=2sec�.

For this, draw a right-angled triangle with angle �. To encode the relationship
sec�= hyp

adj
=

t

2
, we assign the hypothenuse length t and the adjacent side length

2 as in the diagram to the right.

By Pythagoras, the opposite side then has length t2¡ 4
p

. It follows that

sin�= opp
hyp

=
t2¡ 4

p
t

:

θ

t

2

Overall, we have therefore found that Z
1

t2 t2¡ 4
p dt=

t2¡ 4
p

4t
+C:

Example 101. Determine
Z

1
1+x2

dx.

Solution. Of course, we already know that
Z

1

1+ x2
dx=arctan(x)+C. On the other hand, in the alternative

solution below, we pretend that we didn't.

Solution. We substitute x= tan� because then 1+x2= sec2�. Since dx

d�
=

d

d�
tan�= sec2�, we getZ

1

1+ x2
dx=

Z
sec2�d�
sec2�

=

Z
d�= �+C = arctan(x)+C:
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Example 102. Determine
Z

1
(1+x2)2

dx. [That's an integral we care about for partial fractions!]

Solution. We substitute x= tan� because then 1+x2= sec2�. Since dx

d�
=

d

d�
tan�= sec2�, we getZ

1

(1+ x2)2
dx=

Z
sec2�d�
(sec2�)2

=

Z
d�

sec2�
=

Z
cos2�d�:

From Example 94, we know that

Z
cos2�d�= 1

2
(cos(�)sin(�)+ �)+C:

After replacing �= arctan(x), we could stop here, except that our answer can be considerable simplified!

For this, draw a right-angled triangle with angle �. To encode the relationship
tan�= opp

adj
=x, we assign the opposite side length x and the adjacent side length

1 as in the diagram to the right.
By Pythagoras, the hypothenuse then has length 1+x2

p
. It follows that

cos�= adj
hyp

=
1

1+ x2
p ; sin�= opp

hyp
=

x

1+x2
p :

θ

x

1

Hence cos(�)sin(�)= x

1+x2
so that, combined, we getZ

1

(1+ x2)2
dx=

1
2
(cos(�)sin(�)+ �)+C =

1
2

�
x

1+x2
+ arctan(x)

�
+C:

Comment. We just showed that, for instance, sin(arctan(x))= x

1+x2
p .
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Notes for Lecture 20 Wed, 10/9/2024

Partial fractions

Review. rational function = polynomial
another polynomial

Example 103. We are surely all familiar with putting stuff on a common demoninator like in

2
x+1

+ 3
x¡ 1 =

2(x¡ 1)+3(x+1)
(x+1)(x¡ 1) = 5x+1

(x+1)(x¡ 1) :

Partial fractions refers to reversing this process of putting things on a common denominator.

Example 104. The previous example allows us to easily compute the following integral:Z
5x+1

(x+1)(x¡ 1) dx=
Z

2
x+1

dx+
Z

3
x¡ 1 dx=2lnjx+1j+3lnjx¡ 1j+C:

Make sure that you are comfortable with integrating the two simpler integrals!
[For instance, notice that substituting u= x+1 in the first of the two, we have du=dx which is why we just
get log of x+1.]

Example 105. Evaluate
Z

x+4
x(x¡ 2) dx by partial fractions.

Solution. Partial fractions tells us that x+4
x(x¡ 2) =

A
x
+

B
x¡ 2 for some numbers A;B that we still need to find:

� To find A and B we multiply both sides with x(x¡ 2) to clear denominators:

x+4=(x¡ 2)A+xB

� This equation has to be true for all values of x:
Set x=0 to get 4=¡2A so that A=¡2.
Set x=2 to get 6=2B so that B=3.

� We can now verify that, indeed, x+4
x(x¡ 2) =

¡2
x
+

3
x¡ 2 .

We therefore have
Z

x+4
x(x¡ 2) dx=

Z
¡2
x
dx+

Z
3

x¡ 2 dx=¡2lnjxj+3lnjx¡ 2j+C.

Important. Setting x=0 and x= 2 makes our life particularly easy. On the other hand, note that we can set
x to any values to get valid equations for A and B (once we have two equations for those two unknowns, we
should be able to solve for them).
Alternatively, note that both sides of x+4=(x¡2)A+xB are polynomials in x. We can therefore also equate
coefficients: comparing the coefficients of x gives 1=A+B while comparing constant coefficients gives 4=¡2A.
Solving these, we again find A=¡2 and B=3.
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Example 106. Evaluate
Z

2x¡ 5
x(x+1)(x+2)

dx by partial fractions.

Solution. Partial fractions tells us that 2x¡ 5
x(x+1)(x+2)

=
A
x
+

B
x+1

+
C

x+2
for certain numbers A;B;C.

� We multiply both sides with x(x+1)(x+2) to clear denominators:

2x¡ 5= (x+1)(x+2)A+x(x+2)B+ x(x+1)C

� Set x=0 to get ¡5=2A so that A=¡5

2
.

Set x=¡1 to get ¡7=¡B so that B=7.
Set x=¡2 to get ¡9=2C so that C =¡9

2
.

� Consequently: 2x¡ 5
x(x+1)(x+2)

=¡5
2
� 1
x
+

7
x+1

¡ 9
2
� 1
x+2

.

Hence:
Z

2x¡ 5
x(x+1)(x+2)

dx=¡5
2

Z
dx
x
+7

Z
dx
x+1

¡ 9
2

Z
dx
x+2

=¡5
2
lnjxj+7lnjx+1j ¡ 9

2
lnjx+2j+C.

To decompose the rational function f(x)

g(x)
into partial fractions:

(a) Check that degree f(x)< degree g(x). (Otherwise, long division!)

(b) Factor g(x) as far as possible.

(c) For each factor of g(x) collect terms as follows:

� For a linear factor x¡ r, occuring as (x¡ r)m in g(x), these terms are

A1
x¡ r +

A2
(x¡ r)2 + :::+

Am
(x¡ r)m :

� For a quadratic factor x2+ px+ q, occuring as (x2+ px+ q)m in g(x), these terms are

B1x+C1
x2+ px+ q

+
B2x+C2

(x2+ px+ q)2
+ :::+

Bmx+Cm
(x2+ px+ q)m

:

(d) Determine the values of the unknown constants (the A's, B's and C's).

Example 107. Evaluate
Z
x4+3x3+1

x3¡x dx.

Solution. (outline) In order to proceed as in the previous problem, we need to address two things:

(a) Since the degree of the numerator is not less than the degree of the denominator, we need to first perform
long division. In this case, we get

x4+3x3+1

x3¡ x =x+3+
x2+3x+1

x3¡x :

(b) Factor the denominator: x3¡ x=x(x2¡ 1)= x(x¡ 1)(x+1).

Therefore,Z
x4+3x3+1

x3¡ x dx=

Z �
x+3+

x2+3x+1
x(x¡ 1)(x+1)

�
dx=

1
2
x2+3x+

Z
x2+3x+1

x(x¡ 1)(x+1)
dx:

We then can evaluate the final integral as in the previous problem.
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Notes for Lecture 21 Mon, 10/14/2024

Example 108. Evaluate
Z
x4+3x3+1

x3¡x dx.

Solution.

� Since the degree of the numerator is not less than the degree of the denominator, we first perform long
division. In this case, we get

x4+3x3+1

x3¡ x =x+3+
x2+3x+1

x3¡x :

� Factor the denominator: x3¡ x=x(x2¡ 1)= x(x¡ 1)(x+1).

� x4+3x3+1

x3¡ x =x+3+
x2+3x+1

x(x¡ 1)(x+1)

� By partial fractions
x2+3x+1

x(x¡ 1)(x+1)
=
A
x
+

B
x¡ 1 +

C
x+1

for certain numbers A;B;C.

� We multiply both sides with x(x¡ 1)(x+1) to clear denominators:

x2+3x+1=(x¡ 1)(x+1)A+x(x+1)B+ x(x¡ 1)C

� Set x=0 to get 1=¡A so that A=¡1.
Set x=1 to get 5=2B so that B=

5

2
.

Set x=¡1 to get ¡1=2C so that C =¡1

2
.

Therefore, Z
x4+3x3+1

x3¡x dx =

Z �
x+3¡ 1

x
+

5/2
x¡ 1 ¡

1/2
x+1

�
dx

=
1
2
x2+3x¡ lnjxj+ 5

2
lnjx¡ 1j ¡ 1

2
lnjx+1j:

Example 109. Determine the shape (but not the exact numbers involved) of the partial fraction
decomposition of the following rational functions.

(a)
x2¡ 2
x4¡x2

(b)
x7¡ 2
x4¡x2

(c)
x3¡ 7x+1
x2(x2+1)

(d)
x2+5

(x+2)3(x2+1)2

Solution.

(a) x2¡ 2
x4¡x2 =

x2¡ 2
x2(x¡ 1)(x+1)

=
A
x
+
B

x2
+

C
x¡ 1 +

D
x+1

(b) Note that in this case, we need to do long division first. Since x7 /x4 = x3, the result is of the form
Ax3+Bx2+Cx+D with some remainder that still needs to be divided by x4¡ x2. Hence:
x7¡ 2
x4¡x2 =

x7¡ 2
x2(x¡ 1)(x+1)

=Ax3+Bx2+Cx+D+
E
x
+

F

x2
+

G
x¡ 1 +

H
x+1

(c) x3¡ 7x+1

x2(x2+1)
=
A
x
+
B

x2
+
Cx+D

x2+1

(d) x2+5

(x+2)3(x2+1)2
=

A
x+2

+
B

(x+2)2
+

C

(x+2)3
+
Dx+E

x2+1
+

Fx+G

(x2+1)2
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Example 110. Evaluate
Z
x7+3x+1
x4+x2

dx.

Solution.

� Since the degree of the numerator is not less than the degree of the denominator, we first perform long
division. In this case, we get

x7+3x+1

x4+x2
= x3¡ x+ x3+3x+1

x4+ x2
:

� For the remainder part, partial fractions now tells us its decomposed shape:

x3+3x+1

x4+ x2
=
x3+3x+1

x2(x2+1)
=
A
x
+
B

x2
+
Cx+D

x2+1

� We multiply both sides with x2(x2+1) to clear denominators:

x3+3x+1= x(x2+1)A+(x2+1)B+ x2(Cx+D)

� We can now compare the coefficients of x3; x2; x; 1 on both sides.
Coefficients of x3: 1=A+C

Coefficients of x2: 0=B+D

Coefficients of x: 3=A

Coefficients of 1: 1=B.
Hence, A=3, B=1, C =1¡A=¡2, D=¡B=¡1.
Note. By coefficient of 1 we mean the constant terms of the polynomials (the stuff without any x).
Alternatively. We can also plug in values for x to get equations in A; B; C; D. Unfortunately,
our only �magic� choice is x=0. This gives B=1. Instead of plugging in random values for x (we
could do that!) we can then subtract the (x2+ 1)B from both sides and divide by x to get the
simpler x2¡x+3=(x2+1)A+x(Cx+D). Then we can again set x=0 to find 3=A. Finish
this for practice!

� Consequently: x
7+3x+1

x4+x2
=x3¡ x+ 3

x
+

1

x2
+
¡2x¡ 1
x2+1

.

Finally, we can integrate to find:Z
x7+3x+1

x4+x2
dx =

Z �
x3¡ x+ 3

x
+

1

x2
¡ 2x

x2+1
¡ 1

x2+1

�
dx

=
1
4
x4¡ 1

2
x2+3lnjxj ¡ 1

x
¡ ln(x2+1)¡ arctan(x)+C

Here, we computed
Z

2x

x2+1
dx= ln(x2+1)+C by substituting u=x2+1. Do it!
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Notes for Lecture 22 Wed, 10/16/2024

Example 111. Evaluate
Z

2x+1
x2+6x+9

dx.

� This time, after factoring, partial fractions tells us that

2x+1

x2+6x+9
=

2x+1

(x+3)2
=

A
x+3

+
B

(x+3)2
:

� Clearing denominators, 2x+1=(x+3)A+B. Setting x=¡3, we find¡5=B. There is no �magic� next
choice for x so we just set x=0 (any other choice works as well) to get 1=3A¡5, which implies A=2.

� Integration now is again straightforward (make sure it is to you!):Z
2x+1

x2+6x+9
dx=

Z
2

x+3
dx+

Z
¡5

(x+3)2
dx=2lnjx+3j+ 5

x+3
+C:

Comment. While there is no �magic� next choice for x, we can take derivatives to get rid of B! Indeed,
differentiating 2x+1= (x+3)A+B gives 2=A directly.

Comment. The form A

x+3
+

B

(x+3)2
is equivalent to the form Cx+D

(x+3)2
. However, the former is more useful for

integrating.

Improper integrals

Example 112. Determine
Z
0

1
e¡xdx.

This integral is an example of an improper integral of type I (because one of its limits is 1).

Make a sketch!

Solution. Replacing the upper limit with b, we have
Z
0

b

e¡xdx=
h
¡e¡x

i
0

b
=1¡ e¡b.

Therefore,
Z
0

1
e¡xdx= lim

b!1

Z
0

b

e¡xdx= lim
b!1

(1¡ e¡b)= 1.

Solution. (short version) Once experienced, we can just write
Z
0

1
e¡xdx=

h
¡e¡x

i
0

1
= 0¡ (¡1) = 1 with

the understanding that we used lim
x!1

¡ e¡x=0.

Example 113. Determine
Z
1

1 1
x4
dx as well as

Z
1

11
x
dx.

Make a sketch! In the first quadrant, both functions look pretty similar.

Solution.

(a)
Z
1

1 1

x4
dx=

�
¡ 1

3x3

�
1

1
=0¡

�
¡1
3

�
=
1
3
where we used that lim

x!1
¡ 1

3x3
=0.

(b)
Z
1

11
x
dx=

h
lnjxj

i
1

1
but lim

x!1
lnjxj=1. We thus say that this integral diverges (to1 in this case).
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Notes for Lecture 23 Fri, 10/18/2024

Example 114. Determine
Z
¡1

1 1
x2+1

dx.

Make a sketch! (For that, note that the integrand is always positive and that it goes to 0 as x!1 or x!¡1.
Also, you can see that the maximum occurs at x=0. Taken together, the graph looks like a single mound.)
Your final answer should be �.

Solution. Recall that
Z

1

x2+1
dx=arctan(x)+C. If necessary, review tan(x)= sin(x)

cos(x)
and its inverse function

arctan(x) to recall that

lim
x!1

arctan(x)= �
2
; lim

x!¡1
arctan(x)=¡�

2
:

We therefore have
Z
¡1

1 1

x2+1
dx=

�
arctan(x)

�
¡1

1
=
�
2
¡
�
¡�
2

�
=�.

The following integral is an example of an improper integral of type II (because the integrand has
a vertical asymptote at one of the limits).

Example 115. Determine
Z
0

11
x
dx.

Make a sketch!

Solution.
Z
0

11
x
dx=

h
lnjxj

i
0

1
but lim

x!0+
lnjxj=¡1.

Thus, the integral diverges (to 1, in this case).

Example 116. The following is VERY WRONG:

[bad!]
Z
¡2

2 dx
(x+1)2

=
�
¡ 1
x+1

�
¡2

2

=¡1
3
¡ 1=¡4

3
[bad!]

Note how even the answer is screaming trouble: we integrated something positive and got a negative value.

What went wrong? The integrand has a problem at x=¡1!
To be precise, it has a vertical asymptote at x=¡1. Since 1

(x+1)2
is not differentiable (not even continuous) at

x=¡1, we can only use the antiderivative ¡ 1

x+1
for x=/ ¡1. Since ¡1 is in the domain of integration [¡2; 2],

we cannot directly apply the Fundamental Theorem of Calculus to this integral.

Instead, we need to split the integral into two improper integrals and analyze these individually:Z
¡2

2 dx
(x+1)2

=
Z
¡2

¡1 dx
(x+1)2

+
Z
¡1

2 dx
(x+1)2

:

But
Z
¡2

¡1 dx
(x+1)2

=
�
¡ 1
x+1

�
¡2

¡1
diverges because lim

x!¡1¡

�
¡ 1
x+1

�
=1. Hence, our original

integral diverges.

[Note that, working on the second integral, the limit we encounter is lim
x!¡1+

�
¡ 1
x+1

�
=¡1. This integral,

by itself, also diverges.]

Example 117. Does
Z
2

3 dx
x¡ 2 converge? Does

Z
2

3 dx
x¡ 2

p converge?

Solution. Final answers: No. Yes.
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Direct comparison and limit comparison

Sometimes we just want to know if an integral converges or diverges. In that case, we can compare
the integrand with simpler functions.
The following illustrates our approach but is not meant to be exhaustive. The same ideas apply (suitably
adjusted), for instance, when the functions are negative.

We assume that both f(x) and g(x) are continuous on [a;1) and positive.

(direct comparison)

�
Z
a

1
f(x)dx converges if 06 f(x)6 g(x) on [a;1) and

Z
a

1
g(x)dx converges.

�
Z
a

1
f(x)dx diverges if f(x)> g(x)> 0 on [a;1) and

Z
a

1
g(x)dx diverges.

(limit comparison)

� If lim
x!1

f(x)
g(x)

=L for 0<L<1 thenZ
a

1
f(x)dx converges if and only if

Z
a

1
g(x)dx converges.

Example 118. Determine whether the following integrals converge or diverge.

(a)
Z
1

1 1
x5+2

dx

(b)
Z
2

1 x2+4
p

x2
dx

(c)
Z
2

1 x+4
p

x2
dx

(d)
Z
2

14¡ sin(x)
x2

dx

(e)
Z
2

14¡ sin(x)
x

dx

(f)
Z
1

1ex

x2
dx

(g)
Z
1

1 1
e2x+3x

p dx

Solution. The following are just indications of how to proceed. Fill in the details!

(a) We can apply the limit comparison test with 1

x5+2
and 1

x5
because lim

x!1

1/(x5+2)

1/x5
=1.

Since
Z
1

1 1

x5
dx=

�
¡ 1

4x4

�
1

1
=
1
4
converges, it follows that

Z
1

1 1

x5+2
dx converges as well.

(b) Do limit comparison with x2
p

x2
=

1

x
to conclude that this integral diverges.

(c) Do limit comparison with
x

p

x2
=

1

x3/2
to conclude that this integral converges.

(d) Do a direct comparison with 5

x2
to conclude that this integral converges.

(e) Do a direct comparison with 3

x
to conclude that this integral diverges.

(f) Note that lim
x!1

ex

x2
=1. Hence the integral obviously diverges.

(g) Do limit comparison with 1

e2x
p = e¡x to conclude that this integral converges.
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Notes for Lecture 24 Mon, 10/21/2024

Review. Direct comparison and limit comparison

L'Hospital's rule

Example 119. The following example illustrates that limits of the form �11 � are completely
undetermined. Anything is possible for the actual limit:

� lim
x!1

x2

x
= lim
x!1

x=1

� lim
x!1

x
x2
= lim
x!1

1
x
=0

� lim
x!1

x
3x

= lim
x!1

1
3
= 1
3

� lim
x!1

x (1+ sin2(x))
x

= lim
x!1

(1+ sin2(x)) This limit does not exist.

Theorem 120. (L'Hospital's rule) If lim
x!1

f(x)=1 and lim
x!1

g(x)=1, then

lim
x!1

f(x)
g(x)

= lim
x!1

f 0(x)
g 0(x)

:

The same conclusion holds if lim
x!1

f(x)= 0 and lim
x!1

g(x)= 0.

[It is important to realize that L'Hospital's rule only applies to the undetermined cases �11� and �0
0
�.]

Example 121.
Z
0

1
xe¡3xdx=

Your final answer should be 1

9
.

Along the way, you will need the limit lim
x!1

xe¡3x= lim
x!1

x

e3x
=

L'Hospital
lim
x!1

1

3e3x
=0.
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Notes for Lecture 25 Fri, 10/25/2024

Sequences

A sequence, often denoted fang, is an infinite list of its terms a1; a2; a3; :::.
We'll define it precisely later, but one thing we are interested in is the limit lim

n!1
an (if it exists).

Here are a few first examples of sequences:

� 2; 4; 6; 8; 10; ::: (that is, a1=2, a2=4, :::)
This is the sequence fang with an=2n. Clearly, lim

n!1
an=1.

� 1; ¡ 1; 1; ¡ 1; 1; :::
This is the sequence fang with an=(¡1)n¡1. The limit lim

n!1
an does not exist.

Comment. Some part of the sequence �goes to� 1 but another part to ¡1. There is no single value
that all terms approach.

� 1

2
;
1

4
;
1

8
;

1

16 ;
1

32 ; :::

This is the sequence fang with an= 1

2n
. Clearly, lim

n!1
an=0.

Preview. We will learn later that the series 1
2
+
1

4
+
1

8
+

1

16
+

1

32
+ ::: also converges and equals 1. Can

you maybe already explain why this is the case?

� 3; 3.1; 3.14; 3.141; 3.1415; 3.14159; :::
This is the sequence fang where an consists of the first n (decimal) digits of �. Clearly, lim

n!1
an=�.

� 1

1
;
1

4
;
1

9
;

1

16 ;
1

25 ; :::

This is the sequence fang with an= 1

n2
. Clearly, lim

n!1
an=0.

Preview. We will learn later that the series 1

1
+
1

4
+
1

9
+

1

16
+

1

25
+ ::: also converges and equals �2

6
.

� 1; 1; 2; 3; 5; 8; 13; 21; :::
These are the Fibonacci numbers fFng. They are defined recursively: Fn= Fn¡1+ Fn¡2 together
with the initial values F1=1, F2=1. Clearly, lim

n!1
Fn=1.

� 1

1
;
2

1
;
3

2
;
5

3
;
8

5
;

13
8
;

21
13 ;

34
21 ; :::

These are quotients of Fibonacci numbers fang with an= Fn+1
Fn

.

Numerically, 1; 2; 1.5; 1.667; 1.6; 1.625; 1.615; 1.619; ::: Looks like lim
n!1

an exists and is about
1.618.

Sequences and series. In a little bit, we will also be interested in series. These are infinite sums
such as 1

2
+ 1

4
+ 1

8
+ 1

16 +
1

32 + :::. Do not confuse these two!

Confusing sequences and series would be like confusing a function and its definite integral.
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Limits of sequences

If lim
x!1

f(x)=L (the limit of a function: x is real)

then lim
n!1

f(n)=L (the limit of a sequence: n is an integer).

Important. The reverse is not true: for instance, lim
n!1

sin(�n)= 0 but lim
x!1

sin(�x) does not exist.

Example 122. Determine the following limits:

(a) lim
n!1

3n2+7n¡ 8
8n2+n+1

(b) lim
n!1

3n2+7n¡ 8
8n3+n+1

(c) lim
n!1

e3n

n2

(d) lim
n!1

sin(n)
n

(e) lim
n!1

cos
�
�¡ 1

n2

�
Solution. In each example, try to first �see� the limit! Then, apply some technique (like L'Hospital) to confirm.

(a) lim
n!1

3n2+7n¡ 8
8n2+n+1

=
3
8

The easiest way to see this is to note that the main terms in the numerator and denominator are 3n2 and
8n2. It follows that the limit is the same as limn!1

3n2

8n2
= limn!1

3

8
=0.

We can make this argument precise in two different ways:

� 3n2+7n¡ 8
8n2+n+1

=
3+

7

n
¡ 8

n2

8+
1

n
+

1

n2

and now we can observe that all terms like 7/n go to 0 as n!1.

� Since the quotient is of the undetermined form �11�, we can apply L'Hospital (twice):

lim
n!1

3n2+7n¡ 8
8n2+n+1

=
LH

lim
n!1

6n+7
16n+1

=
LH

lim
n!1

6
16

=
3
8

(b) lim
n!1

3n2+7n¡ 8
8n3+n+1

=0

(c) lim
n!1

e3n

n2
=1

This is clear if you keep in mind that exponential growth exceeds any polynomial growth.
If needed, we can apply L'Hospital (twice!) since the limit is of the form �11�:

lim
n!1

e3n

n2
=
LH

lim
n!1

3e3n

2n
=
LH

lim
n!1

9e3n

2
=1

(d) lim
n!1

sin(n)
n

=0

Note that ¡ 1

n
6 sin(n)

n
6 1

n
. Since our sequence is squeezed between two sequences which approach 0,

our limit has to be 0 as well.
Important. We cannot apply L'Hospital because the limit is not of the form �11� or �0

0
�. If we did, we

would get the limit limn!1
cos(n)
1

which does not exist (because the values oscillate between¡1 and 1).

(e) lim
n!1

cos
�
�¡ 1

n2

�
= cos(�)=¡1
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Notes for Lecture 26 Mon, 10/28/2024

Review. The following forms are indeterminate: �11 �, �0
0
�, �0 �1�, �10�, �11�, �00�. By applying

ln in the last three cases, we can always write these as �11 � or �0
0
�, so that we can apply L'Hospital.

Example 123. Determine the following limits:

(a) lim
n!1

lnn
n

(b) lim
n!1

n1/n

(c) lim
n!1

�2
n
p

(d) lim
n!1

n2
n
p

(e) lim
n!1

�
1+ 2

n

�n
Solution.

(a) lim
n!1

lnn
n

=
LH

lim
n!1

1/n
1

=0

We were able to use L'Hospital because the limit was of the form �11�.

(b) lim
n!1

n1/n= lim
n!1

exp(ln(n1/n))= lim
n!1

exp
�
1
n
ln(n)

�
= exp(0)= 1

Note that we used the limit from the previous part.
Comment. We wrote exp(x)= ex simply to avoid using exponents for typographical reasons.

(c) lim
n!1

�2
np

= lim
n!1

�2/n=�0=1

(d) lim
n!1

n2
np

= lim
n!1

n2/n= lim
n!1

exp(ln(n2/n))= lim
n!1

exp
�
2
n
ln(n)

�
= exp(0)=1

(e) lim
n!1

�
1+

2
n

�n
= lim
n!1

exp
�
ln
��

1+
2
n

�n��
= lim
n!1

exp
�
nln
�
1+

2
n

��
= e2

In the final step, we used that lim
n!1

nln
�
1+

2
n

�
= lim
n!1

ln
�
1+

2

n

�
1

n

= lim
n!1

1

1+
2
n

�
�
¡ 2

n2

�
¡ 1

n2

=2.

Comment. More generally, lim
n!1

�
1+

x
n

�n
= ex for any x.

The following is a precise definition of the limit of a sequence:

Definition 124. lim
n!1

an=L means that:

for every "> 0 there is a value N such that, for all n>N , jan¡Lj<".

Here are a few basic facts about limits:

� lim
n!1

an= lim
n!1

an+1

� If lim
n!1

an=A and lim
n!1

bn=B then lim
n!1

(an+ bn)=A+B and lim
n!1

(anbn)=AB.

� If lim
n!1

an=A then lim
n!1

f(an)= f(A) provided that f(x) is continuous at A.
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Example 125. lim
n!1

xn=

8>>>>>><>>>>>>:
1; if x> 1;
1; if x=1;
0; if ¡1<x< 1;
does not exist; if x6¡1:

If you think of a representative case for each situation, then this (important!) example becomes very natural:

� lim
n!1

2n=

� lim
n!1

1n=

� lim
n!1

(1/2)n=

� lim
n!1

(¡1/2)n=

� lim
n!1

(¡1)n=

� lim
n!1

(¡2)n=

The geometric sum

(geometric sum) X
n=0

M

xn=1+x+x2+ :::+xM = 1¡xM+1

1¡x

Why? Let us write S=1+ x+x2+ :::+xM.
Note that xS = x+ x2 + ::: + xM + xM+1 and that the result has most terms in common with our original
sum. In fact, the right-hand side is S ¡ 1+xM+1. This means that

xS=S ¡ 1+ xM+1:

Solving this for S, we find that S= xM+1¡ 1
x¡ 1 which is equivalent to the above formula.

Example 126. Determine the sum 1+ 1
2
+ 1
4
+ 1
8
+ ���+ 1

2M
. What happens as M!1?

Solution. This is a geometric sum with x= 1

2
. Thus,

1+
1
2
+
1
4
+
1
8
+ ���+ 1

2M
=
1¡
�
1

2

�
M+1

1¡ 1

2

:

Note that

lim
M!1

1¡
�
1

2

�
M+1

1¡ 1

2

=
1¡ 0
1¡ 1

2

=2:

Armin Straub
straub@southalabama.edu

57



Notes for Lecture 27 Wed, 10/30/2024

Quiz. Four limits that we can �see� plus one that we need to work out, like the following:

lim
n!1

3

n2
n

r
= lim
n!1

�
3

n2

�
1/n

= lim
n!1

exp
�
ln
��

3

n2

�
1/n
��

= lim
n!1

exp
�
1
n
ln
�
3

n2

��
= exp(0)=1

where we used that

lim
n!1

1
n
ln
�
3

n2

�
= lim
n!1

ln(3)¡ 2ln(n)
n

=
LH

�11�
lim
n!1

¡2 � 1
n

1
=0:

Series

A tortoise racing a Greek hero::: Zeno's paradox:
https://en.wikipedia.org/wiki/Zeno%27s_paradoxes#Achilles_and_the_tortoise

Example 127. 1
2
+ 1
4
+ 1
8
+ 1

16
+ :::=

X
n=1

1
1
2n

=1

Solution. Visual!

Solution. Redo this example by taking the limit of a geometric sum.

Geometric series

Review. The geometric sum is

X
n=0

M

xn=1+x+x2+ :::+xM = 1¡xM+1

1¡x :

Taking the limit M!1 in the geometric sum, we get: (recall that lim
M!1

xM =0 if jxj< 1)

(geometric series) If jxj< 1, then

X
n=0

1

xn=1+x+x2+ :::= 1
1¡x:

If jxj> 1, then the geometric series diverges.

Example 128. Compute the following series (or state that it diverges):

(a)
X
n=0

1
1
2n

(b)
X
n=3

1
1
2n

(c)
X
n=0

1
7

10n

(d)
X
n=2

1
7

10n

(e)
X
n=0

1
5
3n

(f)
X
n=2

1

3 � 4¡n

(g)
X
n=0

1 �
7
2n
¡ 3n

5n

�

(h)
X
n=0

1
5n

3n

(i)
X
n=0

1

(¡1)nx2n
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Solution.

(a)
X
n=0

1
1
2n

=
X
n=0

1 �
1
2

�n
=

1

1¡ 1

2

=2

(b)
X
n=3

1
1
2n

=
X
n=0

1
1
2n
¡
�
1

20
+

1

21
+

1

22

�
=2¡

�
1+

1
2
+
1
4

�
=
1
4

(c)
X
n=0

1
7
10n

=7
X
n=0

1 �
1
10

�n
=7 � 1

1¡ 1

10

=
70
9

(d)
X
n=2

1
7
10n

=
X
n=0

1
7
10n

¡
�

7

100
+

7

101

�
=
70
9
¡
�
7+

7
10

�
=

7
90

(e)
X
n=0

1
5
3n

=5
X
n=0

1
1
3n

=5 � 1

1¡ 1

3

=
15
2

(f)
X
n=2

1
3 � 4¡n=3

X
n=2

1
1
4n

=3

 
1

1¡ 1

4

¡ 1¡ 1
4

!
=
1
4

(g)
X
n=0

1 �
7
2n
¡ 3n

5n

�
=7
X
n=0

1 �
1
2

�n
¡
X
n=0

1 �
3
5

�n
=7 � 1

1¡ 1

2

¡ 1

1¡ 3

5

= 14¡ 5
2
=
23
2

(h)
X
n=0

1
5n

3n
=
X
n=0

1 �
5
3

�n
doesn't converge because

������5
3

������> 1.
(i)

X
n=0

1
(¡1)nx2n =

X
n=0

1
(¡x2)n = 1

1¡ (¡x2) =
1

1+ x2
provided that j¡x2j < 1 (which is the same as

jxj< 1). If this condition is not true, then the series diverges.

The very last example illustrates an important point. Namely, it shows that there is a novel way
to think about (and get our hands on) functions like 1

1+ x2
.

Recall that we care about this function in particular, because it was a building block in partial fractions. For
instance, we know that its antiderivative is arctan(x).

This is the main reason why we are learning about series in a course that focuses on functions!
We will see that it is very convenient to work with series representing functions: they can be differentiated and
integrated, and give us an opportunity to work with functions that cannot be written in terms of the �usual�
functions.

Example 129. Express the number 0.7777::: as a rational number.
Solution. (using geometric series)

0.7777:::= 7
10

+
7
100

+
7

1000
+ :::=

X
n=1

1
7
10n

=7

 
1

1¡ 1

10

¡ 100
!
=7

�
10
9
¡ 1
�
=
7
9

Solution. (highschool) Everyone is familiar with 0.3333:::= 1

3
. This implies that 0.1111:::= 1

3
� 0.3333:::= 1

9
.

Hence, our number is 0.7777:::=7 � 0.1111:::= 7

9
.
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Notes for Lecture 28 Fri, 11/1/2024

Example 130. (Halloween scare!) Let a = b. Then a2 = ab, so a2 + a2 = a2 + ab or
2a2=a2+ab. Hence, 2a2¡2ab=a2¡ab or 2(a2¡ab)=a2¡ab. Cancelling, we arrive at 2=1.
[Can you see the foul but disguised division by zero?!]

Example 131. Explain the following:

1
499

= 0.002004008016032064128256:::

Solution. The thing to explain is that there appear to be powers of 2 in the decimal on the right-hand side.
Note that the right-hand side can be realized as a geometric series:

2
1000

+

�
2

1000

�
2

+

�
2

1000

�
3

+ :::=
1

1¡ 2

1000

¡ 1= 1
499

:

Example 132. (Halloween scare!) Foul play with divergent series:

0 = (1¡ 1)+ (1¡ 1)+ (1¡ 1)+ :::

= 1¡ 1+1¡ 1+1¡ 1+ :::

= 1+ (¡1+1)+ (¡1+1)+ :::

= 1+0+0:::
= 1

Where did this go wrong? Note that in the second line we have the series
X
n=0

1
(¡1)n which is divergent.

Lesson. Divergent series don't conform to our usual laws.

In other words, convergence of series is crucially important when working with them.

The fallacy above is somewhat similar to the argument �1=1+1, so 0=1�.

Example 133. (geometric series, again) To follow-up the previous example on a positive note: if
a series converges, then we can work with it. The following argument for evaluating the geometric
series is valid provided that the series converges (which we know it is if jxj< 1):

S=1+x+x2+x3+ :::  xS=x+x2+x3+x4+ :::=S ¡ 1  S= 1
1¡x

Example 134. Write the series e2x+ e3x+ e4x+ ::: using �-notation and evaluate it.

Solution. e2x+ e3x+ e4x+ :::=
X
n=2

1
enx=

X
n=0

1
enx¡ 1¡ ex= 1

1¡ ex ¡ 1¡ e
x

Here, we need to assume that jexj< 1 (or, equivalently, x< 0).

Alternatively. e2x+ e3x+ e4x+ :::= e2x(1+ ex+ e2x+ :::)= e2x
X
n=0

1
enx=

e2x

1¡ ex
Check that this is the same!
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Example 135. Express the number 2.313131::: as a rational number.
Solution.

2.313131:::=2+ 31
100

+
31

(100)2
+

31
(100)3

+ :::=2+31
X
n=1

1
1

100n
=2+31

 
1

1¡ 1

100

¡ 1

1000

!
=2+

31
99
=
229
99

This example plus the last one from previous class teach us something fundamental about numbers:

Rational numbers are precisely those numbers which have a finite (like 1.5) or repeating (like
2.313131:::) decimal expansion.

Moreover, there is some ambiguity because finite decimals, like 1.5, can also be written in the repeating fashion
1.5= 1.4999:::.

As a consequence, irrational numbers like 2
p

or � never have a repeating decimal expansion.

The nth-term test for divergence

Review. Recall that the improper integral
Z
N

1
f(x)dx converges if and only if the limit lim

M!1

Z
N

M

f(x)dx exists.

Likewise,
X
n=N

1
an converges if and only if the limit lim

M!1

X
n=N

M

an exists.

For the series
X
n=N

1

an to converge, it is necessary that lim
n!1

an=0.

Can you explain how this follows from the definition of limit?
Intuitively, this is simply saying that the only hope to be able to add infinitely many things (and get something
finite) is if these things are very small.

Theorem 136. (nth-term test for divergence) If lim
n!1

an is not 0, then
X
n=1

1

an diverges.

(In particular, if the limit lim
n!1

an does not exist, then the series diverges.)

Example 137. Show that the following series all diverge.

(a)
X
n=0

1
3n+5n

10 � 5n (b)
X
n=1

1

(¡1)n (c)
X
n=1

1
n2

3n2+7
(d)

X
n=1

1
n

p

log(n)

Solution.

(a) Note that lim
n!1

3n+5n

10 � 5n =
1
10

=/ 0. Hence, the series diverges by the nth-term test for divergence.

(b) The sequence (¡1)n does not converge to 0 as n!1. Hence, the series diverges by the nth-term test.

(c) Since lim
n!1

n2

3n2+7
=
1
3
=/ 0 the series diverges by the nth-term test for divergence.

(d) This series diverges by the nth-term test for divergence because lim
n!1

n
p

logn
is not zero.

In fact, lim
n!1

n
p

logn
=1. (If you don't see this, apply L'Hospital!)

A word of caution. The nth-term test for divergence only gives a necessary condition. It is not
sufficient!

For instance, as we will see next time, the series
X
n=1

1
1
n

diverges although lim
n!1

1
n
=0.
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Notes for Lecture 29 Mon, 11/4/2024

Integral comparison test

Theorem 138. (Integral comparison test) Suppose that the function f(x) is positive, con-
tinuous and decreasing for x>N . Then:

X
n=N

1

f(n) converges ()
Z
N

1
f(x)dx converges

In other words, the series and integral both converge or both diverge.
Why? Make a sketch where you compare the area under the curve f(x) with rectangles of width 1. (See
Section 9.3 in our book for nice illustrations.)
Warning: if they converge, of course, the values of the series and the integral are going to be different!

Example 139. The harmonic series
X
n=1

1
1
n
=1+ 1

2
+ 1
3
+ 1
4
+ ::: diverges. Why?

Solution. Note that lim
n!1

1
n
=0, so we cannot directly use our test for divergence coming out of Theorem 136.

However, we can combine terms as follows to see the divergence:

1+
1
2
+

1
3
+
1
4

>1
4
+
1
4
=
1
2

+
1
5
+
1
6
+
1
7
+
1
8

>1
8
+
1
8
+
1
8
+
1
8
=
1
2

+
1
9
+

1
10

+
1
11

+
1
12

+
1
13

+
1
14

+
1
15

+
1
16

> 1
16+

1
16+

1
16+

1
16+

1
16+

1
16+

1
16+

1
16=

1
2

+ :::

Solution. (integral comparison test) The function f(x)= 1

x
is positive, continuous and decreasing for x> 1.

Therefore, X
n=1

1
1
n

converges ()
Z
1

11
x
dx converges:

Since
Z
1

M 1
x
dx=

h
lnjxj

i
1

M
= lnM!1 as M!1, the integral diverges. It follows, by comparison, that the

harmonic series diverges, too.

Example 140. Show that the series
X
n=1

1
1
n2

=1+ 1
4
+ 1
9
+ 1

16
+ ::: converges.

[It is considerably more difficult to show that, in fact,
X
n=1

1
1

n2
=
�2

6
.]

Solution. As in the previous example, the series
X
n=1

1
1

n2
converges if and only if the integral

Z
1

1 1

x2
dx converges.

Since
Z
1

1 1

x2
dx=

�
¡1
x

�
1

1
=0¡ (¡1)= 1, the integral converges, and so the series converges as well.

More generally, we have the following result:

(p-series)
X
n=1

1
1
np

is called a p-series. It converges if and only if p> 1.

Why? This follows from the integral comparison test, and because
Z
1

1dx
xp

converges if and only if p> 1.

See next example.
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Example 141. For what values of p does
Z
1

1dx
xp

converge?

Solution. For p=/ 1, we have
Z
1

1dx
xp

=

�
1

¡p+1
x¡p+1

�
1

1
.

If p> 1, then lim
x!1

x¡p+1= lim
x!1

1

xp¡1
=0, and we find that the integral converges.

If p< 1, then lim
x!1

x¡p+1=1, and we find that the integral diverges.

We are missing only the case p=1: in that case,
Z
1

11
x
dx=

h
lnjxj

i
1

1
diverges because lim

x!1
lnjxj=1.

In summary,
Z
1

1dx
xp

converges if and only if p> 1.

Example 142. Determine whether the following series converge or diverge.

(a)
X
n=0

1
1

2n+1
(b)

X
n=0

1
1

n2+1

Solution. You can use the integral comparison test to find that the first series diverges and the second series
converges. However, it is more convenient to look at these series by comparison which is what we discuss next.

Direct comparison and limit comparison

Recall that we discussed direct comparison and limit comparison tests for improper integrals. The
same ideas apply to series:

We assume that both an> 0 and bn> 0.
(direct comparison)

�
X
n=N

1

an converges if an6 bn and
X
n=N

1

bn converges.

�
X
n=N

1

an diverges if an> bn and
X
n=N

1

bn diverges.

(limit comparison)

� If lim
n!1

an
bn
=L for 0<L<1 then

X
n=N

1

an and
X
n=N

1

bn both converge or both diverge.

� If lim
n!1

an
bn
=0 and

X
n=N

1

bn converges, then
X
n=N

1

an converges.

� If lim
n!1

an
bn
=1 and

X
n=N

1

bn diverges, then
X
n=N

1

an diverges.

Armin Straub
straub@southalabama.edu

63



Example 143. Determine whether the following series converge or diverge.

(a)
X
n=1

1
1

n2+ ln(n)
(b)

X
n=1

1
n+ ln(n)
n2+4

Solution.

(a) (direct comparison) Note that, for all n> 1, n2+ log(n)>n2 and so 1

n2+ log(n)
6 1

n2
.

By comparison,
X
n=1

1
1

n2+ log(n)
6
X
n=1

1
1

n2
=finite and so

X
n=1

1
1

n2+ log(n)
converges.

(limit comparison) Observe that we can just �see� this: for large n, our terms 1

n2+ log(n)
�behave� like

1

n2
and so

X
n=1

1
1

n2+ log(n)
converges if and only if

X
n=1

1
1

n2
converges. This reasoning is made precise

by the limit comparison test. Spell out the details!
Comment. Like in this example, we often have a �natural� comparison with a geometric series or a p-

series. In those cases, don't spend time thinking about the corresponding integral! Here,
Z
1

1 dx

x2+ log(x)
is such that its antiderivative cannot even be written in terms of the functions we are familiar with.

(b) Our terms an=
n+ ln(n)
n2+4

behave like n

n2
=
1

n
for large n. Thus, we should do limit comparison with bn=

1

n
:

lim
n!1

an
bn

= lim
n!1

n(n+ ln(n))
n2+4

=1:

This means that the series
X
n=1

1
an and

X
n=1

1
bn both converge or both diverge. Since

X
n=1

1
1
n

diverges

(this is the harmonic series), our series diverges as well.

Frequently, we have choices which test to apply to determine whether a series converges:

Example 144. Determine whether the series
X
n=1

1
lnn
n

converges or diverges.

Solution. (via integral comparison) The integral
Z
1

1lnx
x

dx =

Z
0

1
udu obviously diverges (note that we

substituted u= lnx), and hence
X
n=1

1
logn
n

diverges as well.

Comment. Usually, it is a good idea to avoid integral comparison unless there are no easier options.

Solution. (direct comparison) Note that logn
n

>
1
n

for all n> 3 (because logn> 1 for n> 3).

But already
X
n=1

1
1
n

diverges (note that
X
n=3

1
logn
n

>
X
n=3

1
1
n
), so

X
n=1

1
logn
n

has to diverge as well.

Solution. (limit comparison) We do limit comparison of an =
ln n
n

and bn =
1

n
so that an

bn
= ln n. Since

lim
n!1

an
bn

=1 and
X
n=1

1
bn diverges, we conclude that

X
n=N

1
an diverges as well.
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Notes for Lecture 30 Wed, 11/6/2024

Review. The p-series
X
n=1

1
1
np

converges if and only if p> 1.

Example 145. Determine whether the following series converge or diverge.

(a)
X
n=0

1
1

2n+1

(b)
X
n=0

1
1

n2+1

(c)
X
n=1

1
2n+1
3n2+3

(d)
X
n=1

1 2 n
p

+1
3n2+3

Solution.

(a) We could do an integral comparison test (do it!) or we could do a direct comparison (do it!) but, when
possible, it is easiest to do a limit comparison test. Namely, we can �see� that the terms an =

1

2n+1
behave like 1

2n
for large n.

Therefore, we do a limit comparison with bn=
1

n
(you could also choose bn=

1

2n
but that factor of 2 is

not relevant):
an
bn

=
n

2n+1
! 1

2
as n!1:

Since the limit is not zero and finite, limit comparison tells us that
P
an and

P
bn either both converge

or both diverge. Since
X
n=1

1
bn =

X
n=1

1
1
n

is the harmonic, we know that it diverges. It follows that our

series diverges as well.

(b) We proceed as in the previous part but now do a limit comparison with bn =
1

n2
to conclude that our

series converges (note that
X
n=1

1
bn=

X
n=1

1
1

n2
is a p-series with p> 1 and so converges).

(c) We do a limit comparison of the sequence an=
2n+1

3n2+3
with bn=

1

n
.

First, we check that lim
n!1

an
bn

=
2
3
. By the limit comparison, we then find that

X
n=1

1
2n+1

3n2+3
diverges

because
X
n=1

1
1
n

diverges.

(d) We do a limit comparison with bn=
1

n3/2
to conclude that both series converge.

The ratio test

(absolute convergence)

We say that the series
X
n=N

1

an converges absolutely if
X
n=N

1

janj converges.

It is not hard to see (check out Section 9.5 in the book) that absolute convergence implies (regular) convergence.
It is often easier to work with series where all terms are >0. Therefore, it is often easier to establish absolute
convergence of a series (and then get convergence for free). Some tests like the ratio test even give us absolute
convergence.
Caution! There are series which converge but which do not converge absolutely.

One example is the alternating harmonic series 1¡ 1

2
+
1

3
¡ 1

4
+
1

5
¡ :::. We will discuss alternating series soon.
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Note that a series
X
n=N

1

an is geometric if
an+1
an

=L is constant. It converges if and only if jLj< 1.

Theorem 146. (Ratio test) Suppose the limit L= lim
n!1

��������an+1an

�������� exists.
� If L< 1, then the series

X
n=N

1

an converges (absolutely).

� If L> 1, then the series
X
n=N

1

an diverges.

� If L=1, then we don't know. The test is inconclusive.

Example 147. Apply the ratio test to the geometric series
X
n=0

1

xn.

Solution. In this case, an= xn and so
��������an+1an

��������= ��������xn+1xn

��������= jxj.
The ratio test with L= lim

n!1

��������an+1an

��������= jxj then shows that
X
n=0

1
xn converges if jxj<1, and diverges if jxj>1.

Important. The ratio test makes no statement about the cases x= 1 and x=¡1. In these cases, we need to
do additional analysis. Here, it is easy to see directly that the geometric series diverges when x=1 or x=¡1.

Example 148. Determine whether the following series converge or diverge.

(a)
X
n=1

1
n2

2n
(b)

X
n=1

1
2n

n3
(c)

X
n=0

1
(¡1)n 5n

n!

Solution.

(a) We apply the ratio test with an=
n2

2n
.��������an+1an

��������= (n+1)2

2n+1
2n

n2
=
1
2
(n+1)2

n2
=
1
2
n2+2n+1

n2
! 1

2
as n!1

Since 1
2
< 1, the ratio test implies that

X
n=1

1
n2

2n
converges.

(b) Note that 2
n

n3
!1=/ 0. Hence, the series diverges.

Alternatively. Suppose we didn't realize this and, instead, we apply the ratio test with an=
2n

n3
.��������an+1an

��������= 2n+1

(n+1)3
n3

2n
=2

n3

(n+1)3
=2

n3

n3+3n2+3n+1
! 2 as n!1

Since 2> 1, the ratio test implies that
X
n=1

1
2n

n3
diverges.

(c) We apply the ratio test with an=
(¡1)n 5n

n!
.��������an+1an

��������= 5n+1

(n+1)!
n!
5n

=
5

n+1
! 0 as n!1

Since 0< 1, the ratio test implies that
X
n=0

1
(¡1)n 5n

n!
converges.

Review. Recall that n! = 1 � 2 � 3���(n¡ 1) �n. This is the factorial.
It counts the number of ways in which you can order n objects.
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Notes for Lecture 31 Fri, 11/8/2024

Review. Ratio test

The alternating series test

Theorem 149. (Alternating series test) If an is positive, decreasing with lim
n!1

an=0, then

the series
X
n=N

1

(¡1)nan converges.

Why? Proof by picture!

Example 150. Does the alternating harmonic series
X
n=1

1
(¡1)n
n

converge?

Solution. Yes, it converges by the alternating series test: an=
1

n
is positive, decreasing, and lim

n!1
an=0.

Important. Since the harmonic series
X
n=1

1
1
n

diverges, the series
X
n=1

1
(¡1)n
n

does not converge absolutely.

Example 151. For which p does the alternating p-series
X
n=1

1
(¡1)n
np

converge? For which p does

it converge absolutely?
Solution.

� If p> 0, then the series converges by the alternating series test, because an=
1

np
is positive, decreasing,

and lim
n!1

an=0. If p6 0, then lim
n!1

(¡1)n
np

is not zero. Therefore, the series diverges.

� By definition,
X
n=1

1
(¡1)n
np

converges absolutely if and only if
X
n=1

1 ��������(¡1)nnp

��������=X
n=1

1
1
np

converges.

Since this is just the usual p-series,
X
n=1

1
(¡1)n
np

converges absolutely if and only if p> 1.

In summary,
X
n=1

1
(¡1)n
np

converges if and only if p> 0, and converges absolutely if and only if p> 1.

Power series

Definition 152. A power series (about x=0) is a series of the form

X
n=0

1

cnxn= c0+ c1x+ c2x
2+ :::

More generally, a power series about x= a is a series of the form

X
n=0

1
cn(x¡ a)n= c0+ c1(x¡ a)+ c2(x¡ a)2+ :::
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Example 153. Determine all x for which the power series
X
n=1

1
xn

n
converges.

Solution. We apply the ratio test with an=
xn

n
.��������an+1an

��������= ��������xn+1n+1
n
xn

��������= jxj n
n+1

!jxj as n!1

The ratio test implies that
X
n=1

1
xn

n
converges if jxj< 1 (and diverges if jxj> 1).

Note that the ratio test does not tell us what happens when jxj=1. We need to look at those cases more carefully:

� x=1: In this case we get the harmonic series
X
n=1

1
1
n

which we know diverges.

� x=¡1: In this case we get the alternating harmonic series
X
n=1

1
(¡1)n
n

which we know converges.

In summary, the power series
X
n=1

1
xn

n
converges if and only if x is in [¡1; 1).

Note. This is a power series around 0. The series converges for all x less than 1 away from 0. This is why we
say that the power series has radius of convergence 1.

Looking ahead. Which function is hiding behind f(x)=
X
n=1

1
xn

n
?

Power series can be differentiated term-by-term and so f 0(x)=
X
n=1

1
nxn¡1

n
=
X
n=1

1
xn¡1=

X
n=0

1
xn=

1
1¡ x .

Therefore, f(x)=
Z

1
1¡ xdx=¡lnj1¡xj+C.

Finally, the fact that f(0)= 0 implies that C =0. This means that f(x)=¡lnj1¡ xj.
Note that this function is nice at x= 0 (and around it) but that it has a problem for x= 1. Since converging
power series do not have problems, this is one way to see that the radius of convergence is 1.
Let us again look at the special values x=1 and x=¡1. First, we clearly have lim

x!1
f(x)=+1.

On the other hand, lim
x!¡1

f(x)=¡ln(2) implying that
X
n=1

1
(¡1)n
n

=¡1+ 1
2
¡ 1
3
+
1
4
¡ :::=¡ln(2)�¡0.693.

Theorem 154. Every power series
X
n=0

1

cn(x¡a)n has a radius of convergence R, meaning:

(a) if R=0, then the series converges only for x= a,

(b) if 0<R<1, then the series converges for all x such that jx¡ aj<R

but diverges if jx¡ aj>R (in other words, R is as large as possible),

(c) if R=1, then the series converges for all x.

Note that, if 0<R<1, no general statement can be made for the case jx¡ aj=R.

The exact interval of convergence can be (a¡R;a+R) or [a¡R;a+R) or (a¡R;a+R] or [a¡R;a+R].
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Notes for Lecture 32 Mon, 11/11/2024

Example 155. Determine the radius of convergence of the following power series and their exact
interval of convergence.

(a)
X
n=0

1

(n2+4)xn This is a power series about x=0.

(b)
X
n=1

1
2n

n
p (x¡ 3)n This is a power series about x=3.

Solution.

(a) We apply the ratio test with an=(n2+4)xn.��������an+1an

��������= ��������((n+1)2+4)xn+1

(n2+4)xn

��������= jxj n2+2n+5

n2+4
!jxj as n!1

The ratio test implies that
X
n=0

1
(n2+4)xn converges if jxj< 1.

Thus the radius of convergence is 1.
The ratio test does not tell us what happens when jxj=1. We now look at those cases more carefully:

� x=1:
X
n=0

1
(n2+4) clearly diverges (because lim

n!1
(n2+4) is not 0).

� x=¡1:
X
n=0

1
(n2+4)(¡1)n clearly diverges (because lim

n!1
(n2+4)(¡1)n is not 0).

Combined,
X
n=0

1
(n2+4) xn converges if and only if x is in (¡1; 1) (the exact interval of convergence).

(b) We apply the ratio test with an=
2n

n
p (x¡ 3)n.��������an+1an

��������=
����������2n+1(x¡ 3)n+1n+1

p n
p

2n(x¡ 3)n

����������=2jx¡ 3j n
n+1

r
! 2jx¡ 3j as n!1

The ratio test implies that
X
n=1

1
2n

n
p (x¡ 3)n converges if jx¡ 3j< 1

2
.

So the radius of convergence is 1
2
.

The ratio test is inconclusive for jx¡ 3j= 1

2
or, equivalently, x=3¡ 1

2
=
5

2
and x=3+

1

2
=
7

2
:

� x=
5
2
:
X
n=1

1
2n

n
p

�
¡1
2

�n
=
X
n=1

1
(¡1)n

n
p converges by the alternating series test ( lim

n!1
1

n
p =0).

Comment. We could have also just recognized this as the alternating p-series with p= 1

2
.

� x=
7
2
:
X
n=1

1
2n

n
p

�
1
2

�n
=
X
n=1

1
1

n
p is the p-series with p= 1

2
which diverges (because p6 1).

Combined, the exact interval of convergence of
X
n=1

1
2n

n
p (x¡ 3)n is

h
5

2
;
7

2

�
.
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Example 156. Determine the radius of convergence of
X
n=1

1
5n

n2
(4x¡ 3)2n (this is a power series

about 3

4
) and its exact interval of convergence.

Solution. We apply the ratio test with an=
5n

n2
(4x¡ 3)2n.��������an+1an

��������= �������� 5n+1

(n+1)2
(4x¡ 3)2n+2 n2

5n(4x¡ 3)2n

��������=5j4x¡ 3j2 n2

(n+1)2
! 5j4x¡ 3j2 as n!1

The ratio test implies that
X
n=1

1
5n

n2
(4x¡ 3)2n converges if 5j4x¡ 3j2< 1. To focus on x, we can rewrite this

as j4x¡ 3j< 1

5
p or, equivalently,

������x¡ 3

4

������< 1

4 5
p .

In this latter form, we see that the radius of convergence is 1

4 5
p .

The ratio test is inconclusive for
������x¡ 3

4

������= 1

4 5
p or, equivalently, x= 3

4
¡ 1

4 5
p and x= 3

4
+

1

4 5
p :

� x=
3
4
+

1

4 5
p :

X
n=1

1
5n

n2

 
1

5
p
!
2n

=
X
n=1

1
1

n2
is the p-series with p=2 which converges (because p> 1).

� x=
3
4
¡ 1

4 5
p :

X
n=1

1
5n

n2

 
¡ 1

5
p
!
2n

=
X
n=1

1
1

n2
is the same series and so converges as well.

Combined, the exact interval of convergence of
X
n=1

1
5n

n2
(4x¡ 3)2n is

�
3

4
¡ 1

4 5
p ;

3

4
+

1

4 5
p

�
.
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Notes for Lecture 33 Wed, 11/13/2024

Example 157. What is the radius of convergence of the following power series?

(a)
X
n=0

1

n!xn (b)
X
n=0

1
xn

n!

Solution.

(a) We apply the ratio test with an=n!xn:��������an+1an

��������= ��������(n+1)!xn+1

n!xn

��������= jxj (n+1)!1 as n!1 (unless jxj=0)

The ratio test implies that
X
n=0

1
n!xn diverges for all x except x=0. The radius of convergence is 0.

(b) We again apply the ratio test, this time with an=
xn

n!
:��������an+1an

��������= �������� n!xn+1

(n+1)!xn

��������= jxj
n+1

! 0 as n!1

The ratio test implies that
X
n=0

1
xn

n!
converges for all x. The radius of convergence is 1.

Comment. In Example 159 below, we find that
X
n=0

1
xn

n!
= ex.

Power series as functions

The following simply states that we can treat power series as if they were polynomials of infinite
degree when it comes to differentiating or integrating.

Theorem 158. (Term-by-term differentiation and integration)

If
X
n=0

1

cn(x¡ a)n has radius of convergence R> 0, then it defines a function

f(x)=
X
n=0

1

cn(x¡ a)n on the interval (a¡R; a+R):

In this interval, f(x) is arbitrarily often differentiable, and its derivatives can be obtained by
differentiating the power series term by term:

f 0(x) =
X
n=1

1

ncn(x¡ a)n¡1

f 00(x) =
X
n=2

1

n(n¡ 1) cn(x¡ a)n¡2;

and so on. Likewise, f(x) can be integrated term by term:Z
f(x)dx=

X
n=0

1

cn
(x¡ a)n+1
n+1

+C
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Example 159. Compute the derivative of f(x)=
X
n=0

1
xn

n!
. Identify the function f(x).

Solution. We have previously determined that this power series about x=0 has convergence radius R=1.
Therefore, the function f(x) is defined by the series for all x. Its derivative is

f 0(x)=
d
dx

X
n=0

1
xn

n!
=
X
n=1

1
nxn¡1

n!
=
X
n=1

1
xn¡1

(n¡ 1)! =
X
n=0

1
xn

n!
= f(x)

This means that f(x) satisfies the differential equation y0= y. It clearly also satisfies y(0)= 1. It follows that
f(x) is the unique solution of the IVP y0= y, y(0)= 1. We conclude that f(x)= ex.

Example 160. Differentiate both sides of
X
n=0

1

xn= 1
1¡x .

Solution. We find
X
n=1

1
nxn¡1=

1

(1¡ x)2 . This identity is valid if jxj< 1 because that is the condition under

which the geometric series converges.

Comment. If we prefer, we can also write
X
n=1

1
nxn¡1=

X
n=0

1
(n+1) xn.

Important observation. The new series
X
n=1

1
nxn¡1 has again radius of convergence 1 (like the geometric series).

This is a general phenomenon. Differentiating and integrating a power series does not change the radius of
convergence. (However, this can change the behaviour at the endpoints of the interval of convergence.)
[Can you see this by thinking about the effect of an additional factor of n in an when applying the ratio test?]

Example 161. (extra) Evaluate the series
X
n=1

1
1
2n

and
X
n=1

1
n
2n

.

Solution. The first series is just a geometric series:
X
n=1

1
1
2n

=
1

1¡ 1

2

¡ 1=1

For the second series, we can use
X
n=1

1
nxn¡1=

1

(1¡ x)2 with x= 1

2
. In that case,

X
n=1

1
n

2n¡1
=

1�
1¡ 1

2

�
2
=4.

Multiplying both sides by 1

2
, we obtain

X
n=1

1
n
2n

=2.
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Notes for Lecture 34 Fri, 11/15/2024

Taylor series

Review. Let f(x) be a function. What is the best linear approximation to f(x) at x= a?

Solution. The best linear approximation is the tangent line at x=a. This line has slope f 0(a) and goes through
the point (a; f(a)). Hence, the equation for the best linear approximation is f(a)+ f 0(a)(x¡ a).
Preview. We will see below that this is the Taylor polynomial of order 1. The Taylor polynomials of order M
likewise provide the best approximations to f(x) at x= a using polynomials of degree up to M .
Comment. Of course, here we need to restrict to functions f(x) that are differentiable at x= a.

The Taylor series of f(x) at x= a is the series

X
n=0

1
f (n)(a)
n!

(x¡ a)n= f(a)+ f 0(a)(x¡ a)+ f 00(a)
2

(x¡ a)2+ :::

� The Taylor polynomial of order M is the truncation
X
n=0

M
f (n)(a)
n!

(x¡ a)n.

This is the best approximation of the function f(x) at x=a using a polynomial of degree up to M .

� If f(x) can be written as a power series x= a (nice functions can be!), then the Taylor
series equals f(x).
Here, we are, of course, restricted to x within the interval of convergence.

� The Taylor series at x=0 is also called the Maclaurin series of f(x).

� The functions we meet in practice can usually be written as power series (such functions are called analytic
and are the fundamental object in complex analysis), at least about most points (and it usually is not
difficult to tell if a special point is problematic).
A theoretical guarantee is given by Taylor's formula, which says that

f(x)=
X
n=0

N
f (n)(a)
n!

(x¡ a)n+RN(x); with RN(x)=
f (n+1)(c)
(n+1)!

(x¡ a)n+1

for some c between a and x. If RN(x)! 0 as N!1, then f(x)=
X
n=0

1
f (n)(a)
n!

(x¡ a)n.

Example 162. Determine the Taylor polynomials of order 2 and 3 for f(x)= 1

x
at x=3.

Solution. The Taylor polynomial of order 2 is

f(3)+
f 0(3)
1!

(x¡ 3)+ f 00(3)
2!

(x¡ 3)2= 1
3
¡ 1
9
(x¡ 3)+ 1

27
(x¡ 3)2:

Here, we used that f 0(x)=¡ 1

x2
and f 00(x)= 2

x3
so that f 0(3)=¡1

9
and f 00(3)= 2

27
.

For order 3, we also compute f 000(x)=¡ 6

x4
so that f 000(3)=¡ 2

27
. Hence, the Taylor polynomial of order 3 is

f(3)+
f 0(3)
1!

(x¡ 3)+ f 00(3)
2!

(x¡ 3)2+ f 000(3)
3!

(x¡ 3)3= 1
3
¡ 1
9
(x¡ 3)+ 1

27
(x¡ 3)2¡ 1

81
(x¡ 3)3:
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Example 163. Determine the Taylor polynomial of order 3 for f(x)= x
p

at x=1.
Solution. By definition, the Taylor polynomial in question is given by

X
n=0

3
f (n)(1)
n!

(x¡ 1)n= f(1)+ f 0(1)(x¡ 1)+ f 00(1)
2!

(x¡ 1)2+ f 000(1)
3!

(x¡ 1)3:

Clearly f(1)=1 and we to compute the other values f (n)(1) as follows:

� f 0(x)=
1

2 x
p so that f 0(1)= 1

2
.

� f 00(x)=¡ 1

4x3/2
so that f 00(1)=¡1

4
.

� f 00(x)=
3

8x5/2
so that f 000(1)=

3
8
.

The Taylor polynomial therefore is

f(1)+ f 0(1)(x¡ 1)+ f 00(1)
2

(x¡ 1)2+ f 000(1)
6

(x¡ 1)3=1+
1
2
(x¡ 1)¡ 1

8
(x¡ 1)2+ 1

16
(x¡ 1)3:

Comment. Note that we can read off any Taylor polynomial TM(x) of lower order M by just truncating our
polynomial. For instance, T2(x)= 1+

1

2
(x¡ 1)¡ 1

8
(x¡ 1)2 and T1(x)= 1+

1

2
(x¡ 1).

The plot below shows how well these Taylor polynomials approximate f(x)= x
p

near x=1.

0.5 1 1.5 2 2.5 3

0.25

0.5

0.75

1

1.25

1.5

1.75

2

x
T1(x)
T2(x)
T3(x)
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Example 164.

(a) Determine the Taylor series of f(x)= ex at x=0.

(b) Spell out the Taylor polynomial of order 4 for f(x)= ex at x=0.

Solution.

(a) All derivatives of f(x)= ex are f (n)(x)= ex. In particular, f (n)(0)=1 for all n.
Therefore, the Taylor series of f(x)= ex at x=0 is

X
n=0

1
f (n)(0)
n!

xn=
X
n=0

1
xn

n!
= 1+ x+

x2

2
+
x3

6
+
x4

24
+

x5

120
+ ���

Comment. Take the derivative of the power series and observe how it reflects that d

dx
ex= ex. Compare

with Example 159.

Comment. We have that ex=
X
n=0

1
xn

n!
because ex is �nice� and can be written as a power series. This

can be justified, for instance, using Taylor's formula above.

(b) Truncating the Taylor series, the Taylor polynomial of order 4 is

X
n=0

4
xn

n!
= 1+ x+

x2

2
+
x3

6
+
x4

24
:

Example 165. Determine the Taylor series of f(x)= e2x at x=0.

Solution. Since ex=
X
n=0

1
xn

n!
, it follows that e2x=

X
n=0

1
(2x)n

n!
=
X
n=0

1
2nxn

n!
.

Solution. Observe that f (n)(x)= 2ne2x. Hence, e2x=
X
n=0

1
f (n)(0)
n!

xn=
X
n=0

1
2n

n!
xn.

Note. e2x= exex=

�
1+x+

x2

2
+
x3

6
+ :::

��
1+ x+

x2

2
+
x3

6
+ :::

�
=1+2x+2x2+

4
3
x3+ :::

[For instance, we get the 4
3
x3 as 1 � x

3

6
+ x � x

2

2
+
x2

2
�x+ x3

6
� 1= 4

3
x3.]

(Which matches the first terms of our series for e2x.) This illustrates that we can multiply Taylor series.
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Notes for Lecture 35 Mon, 11/18/2024

Example 166. (review) The p-series
X
n=1

1
1
np

converges if and only if p> 1.

The alternating p-series
X
n=1

1
(¡1)n
np

converges if and only if p> 0.

For instance,
X
n=1

1
(¡1)n

n
p (p=1/2) converges. However, it does not converge absolutely.

Series that converge but don't converge absolutely are said to converge conditionally.
One has to be more careful with series that only converge conditionally. For instance, we cannot rearrange the
order of the terms arbitrarily without affecting the overall sum.

Example 167.

(a) Determine the Taylor series of f(x)= cos(x) at x=0.

(b) Spell out the Taylor polynomial of order 4 for f(x)= cos(x) at x=0.

Solution.

(a) The derivatives of f(x) cycle through cos(x);¡sin(x);¡cos(x); sin(x); :::.
In particular, the values f (n)(0) cycle through 1; 0;¡1; 0; :::.
That is, f (2n)(0)= (¡1)n and f (2n+1)(0)=0.
Therefore, the Taylor series of f(x)= cos(x) at x=0 is

X
n=0

1
f (n)(0)
n!

xn=
X
n=0

1
f (2n)(0)
(2n)!

x2n=
X
n=0

1
(¡1)n
(2n)!

x2n:

Note. Assuming that cosx can be written as a power series at x=0, we conclude that

cosx=
X
n=0

1
(¡1)n
(2n)!

x2n:

Again, this can be justified via Taylor's formula or a differential equation.

(b) Truncating the Taylor series, the Taylor polynomial of order 4 is

1¡ x2

2
+
x4

24
:

Example 168. Determine the Taylor series of
Z
e¡x

2
dx at x=0.

Solution. Since ex=
X
n=0

1
xn

n!
, it follows that e¡x

2
=
X
n=0

1
(¡x2)n
n!

=
X
n=0

1
(¡1)n
n!

x2n.

Integrating term by term, we conclude that
Z
e¡x

2
dx=

X
n=0

1
(¡1)n

n!(2n+1)
x2n+1+C.

Note. Since e¡x
2
is an even function, its Taylor series only includes the terms x2n (which are even) and not

terms of the form x2n+1 (which are odd). See also the Taylor series that we got for cos(x) (which is even).
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Example 169. Determine the Taylor series of f(x)=x3+3x2+3x+3 at x=¡1.
Solution. By definition, the Taylor series in question is given by

X
n=0

1
f (n)(¡1)

n!
(x+1)n= f(¡1)+ f 0(¡1)(x+1)+

f 00(¡1)
2!

(x+1)2+
f 000(¡1)

3!
(x+1)3+ :::

Clearly f(¡1)= 2 and we to compute the other values f (n)(¡1) as follows:

� f 0(x)= 3x2+6x+3 so that f 0(¡1)=0.

� f 00(x)= 6x+6 so that f 00(¡1)= 0.

� f 00(x)=
3

8x5/2
so that f 000(1)= 3

8
.

� f 000(x)= 6 so that f 00(¡1)=6.

� We note that f (4)(x)= 0 so that f (n)(¡1)=0 for all n> 4.

The Taylor series therefore is

f(¡1)+ f 0(¡1)(x+1)+
f 00(¡1)
2!

(x+1)2+
f 000(¡1)

3!
(x+1)3=2+

6
3!
(x+1)3=2+ (x+1)3:

Comment. For a polynomial f(x), the Taylor series is the same polynomial just expanded around a different
point. In particular, the Taylor series only has terms up to the degree of f(x).

Example 170. Using familiar simpler power series, find the Taylor series at x=0 for the following:

(a)
4

2+7x3

(b)
2

1+3x
+ e7x

Solution.

(a) Using the geometric series, we have 4

2+7x3
=
4
2
� 1

1¡
�
¡7

2
x3
�=2X

n=0

1 �
¡7
2
x3
�n

=2
X
n=0

1 �
¡7
2

�n
x3n.

(b) Using both the geometric series 1
1¡x =

X
n=0

1
xn and the exponential series ex=

X
n=0

1
xn

n!
, we have

2
1+3x

+ e7x=2 � 1
1¡ (¡3x) + e7x=2

X
n=0

1
(¡3x)n+

X
n=0

1
(7x)n

n!
=
X
n=0

1 �
2 � (¡3)n+ 7n

n!

�
xn:
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Example 171. Find a power series (about x=0) for 1
1+x2

.

Solution. We plug ¡x2 for x in the geometric series
X
n=0

1
xn=

1
1¡ x to getX

n=0

1
(¡x2)n=

X
n=0

1
(¡1)nx2n= 1

1+ x2
. This is valid for j¡x2j< 1 or, equivalently, jxj< 1.

In particular, this power series has radius of convergence 1.

Example 172. Find a power series (about x=0) for arctan(x).

Solution. Recall that
Z

1

1+x2
dx= arctan(x)+C.

In Example 171, we observed that 1

1+ x2
=
X
n=0

1
(¡1)nx2n and that this power series converges if jxj< 1.

We now integrate both sides of
1

1+ x2
=
X
n=0

1
(¡1)nx2n to find a power series for arctan(x).Z X

n=0

1
(¡1)nx2n dx=

X
n=0

1
(¡1)n
2n+1

x2n+1+C

Hence, arctan(x)=
X
n=0

1
(¡1)n
2n+1

x2n+1+C. Since arctan(0)=0, it follows that C =0.

Example 173. What is the exact interval of convergence in the previous example?
Solution. Since the convergence radius is 1, we know that the series converges for jxj<1, and diverges if jxj>1.
We don't yet know whether the series converges for x=�1.

� For x=1, we get the series
X
n=0

1
(¡1)n
2n+1

=1¡ 1
3
+
1
5
¡ 1
7
+ :::

This is an alternating series because the terms are alternately positive and negative. Due to the alter-
nating series test, the series converges (an=

1

2n+1
is positive, decreasing and converges to 0).

� For x=¡1, we get the series ¡
X
n=0

1
(¡1)n
2n+1

which is ¡1 times what we get for x=1.

In particular, this series converges as well.

Our conclusion is that the exact interval of convergence is [¡1; 1].

Comment. The series for x=�1 are not absolutely convergent because, if we sum instead the absolute values
of the terms, then we get

P
n=0
1 1

2n+1
=1+

1

3
+
1

5
+
1

7
+ :::, and we know that this series diverges, because it

is �half� of the harmonic series. This means that the series for x=�1 are only conditionally convergent.

Since arctan(1)= �

4
, we conclude that

X
n=0

1
(¡1)n
2n+1

=1¡ 1
3
+
1
5
¡ 1
7
+ :::=

�
4
.

Note that arctan(¡1)=¡arctan(1)=¡�

4
, which explains why we got the same series times ¡1.
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Notes for Lecture 36 Fri, 11/22/2024

Polar coordinates

Our usual coordinates (x; y) used to describe points in the plane are Cartesian coordinates. Polar
coordinates are an alternative way of describing points.

The polar coordinates (r; �) represent the point (x; y)= r(cos �; sin �).

This means x= r cos(�) and y= r sin(�).
Important comment. Often, � is taken from [0;2�) (but (¡�;�] is another popular choice), and, usually, r>0.

Example 174. Which point (in Cartesian coordinates) has polar coordinates r=2, �= �

6
?

Solution. (x; y)= r(cos�; sin�)= 2
¡
cos�

6
; sin�

6

�
=( 3
p

; 1)

[Draw a right triangle with angle �

6
= 30� to find sin�

6
=
1

2
and cos�

6
= 12¡

�
1

2

�
2

r
=

3
p

2
.]

Note. The polar coordinates r=2, �= �

6
+2� correspond to the same point ( 3

p
;1). Polar coordinates are not

quite unique.
Note. Sometimes, we permit negative r. For instance, the polar coordinates r =¡2, � = �

6
+ � also describe

the point ( 3
p

; 1).

How to calculate the polar coordinates (r; �) for (x; y)?

By Pythagoras, r= x2+ y2
p

, and the angle is �= atan2(y; x)2 (¡�; �].

Why? It follows from x= r cos(�) and y = r sin(�) that y

x
= tan(�). We therefore get �= arctan

¡ y
x

�
if � is

between ¡�

2
and �

2
(plot tan and arctan to remind yourself that arctan only takes values in

¡
¡�

2
;
�

2

�
).

The function atan2 is available in most programming languages (C, C++, PHP, Java, ...) and is a version of
arctan(x) (or atan in those languages). Note that y

x
=

r sin�
r cos�

= tan(�). If our point is in the first or fourth

quadrant, then �= arctan
¡ y
x

�
2
¡
¡�

2
;
�

2

�
. Otherwise, �= arctan

¡ y
x

�
+� (see next example).

Example 175. Find the polar coordinates, with r> 0 and � 2 [0; 2�) of (5; 5) and (¡5;¡5).
Solution. First, plot both points!
The polar coordinates of (5; 5) are r=2 5

p
and �= �

4
.

The polar coordinates of (¡5;¡5) are r=2 5
p

and �= �

4
+�=

5�

4
.

Note. (5; 5) is in the first quadrant and � = arctan
¡ y
x

�
= arctan(1) = �

4
. On the other hand, (¡5;¡5) is in

the third quadrant, and so �=arctan
¡ y
x

�
+�=arctan(1)+�=

5�

4
. [atan2 allows us to avoid this distinction.]

Example 176. Describe a circle around the origin with radius 3 using Cartesian and polar coor-
dinates.
Solution. Using Cartesian coordinates, the circle is described by x2+ y2=32.
Using polar coordinates, the circle is described by the even simpler equation r=3.

Note. In this case, both coordinate equations are easy to see directly. We can, however, convert any equation
in Cartesian coordinates to polar coordinates by substituting x= r cos� and y= r sin�. In our case, we would
go from x2+ y2=32 to (r cos�)2+(r sin�)2=32, which simplifies to r2=9 or r=3 (if we work with r> 0).
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Example 177. Convert the following equations to polar coordinates:

(a) x+ y=3

(b) y=x2+3x+1

Solution. We simply replace x= r cos(�) and y= r sin(�).

(a) r cos(�)+ r sin(�)= 3

(b) r sin(�)= r2cos2(�)+ 3r cos(�)+ 1

Example 178. Which shapes are described by the following equations?

(a) r=3

(b) �= �

4

(c) 16 r6 3, 06 �6 �

4

Solution.

(a) This is a circle of radius 3 centered at the origin.

(b) This is the line through the origin that is angled �

4
= 45� up.

(In Cartesian coordinates, this is the line y=x.)

(c) The inequality 16 r6 3 describes an annulus (shaped like a CD: a disk with a hole).
The inequality 06 �6 �

4
describes a cone.

Putting these two together, the region looks as follows:

1 2 3

1

2

3

Example 179. Describe the y-axis using polar coordinates.
Solution. �=��

2
(just �= �

2
is enough if we also allow r < 0).

Alternatively. In Cartesian coordinates, the y-axis is described by the equation x = 0. In polar coordinates,
this becomes r cos(�)= 0. We can simplify this to r=0 (that's just the origin) or cos(�)= 0, where the latter
becomes �=��

2
(if we work with � restricted to (¡y= x2+3x+1�; �]).
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Notes for Lecture 37 Mon, 11/25/2024

Review. Polar coordinates

Parametric curves

Example 180. The unit circle is described by the Cartesian equation x2 + y2 = 1 (in polar
coordinates, the equation would be r = 1). Instead of such coordinate equations, we can also
describe the same curve by parametrizing it: x= cos(t), y= sin(t) with parameter t2 [0; 2�].
Comment. A curve can be parametrized in many ways. For instance, x = t, y = 1¡ t2

p
with t 2 [¡1; 1] is

another parametrization of the upper half-circle.
Remark. Note the difference in philosophies behind describing curves: an equation like x2 + y2 = 1 is �exclu-
sionary� because we start with all points (x; y) and then restrict to those with x2+ y2=1. On the other hand,
x= cos(t), y= sin(t) with t2 [0; 2�] is �inclusionary� because we are listing precisely the points on the curve.

We can work with parametric curves similarly to what we have been doing. For instance:

(arc length) The parametric curve x= f(t), y= g(t) with t2 [a; b] has arc length

L=
Z
a

b
�
dx
dt

�
2

+
�
dy
dt

�
2

s
dt=

Z
a

b

(f 0(t))2+(g 0(t))2
p

dt:

Note that
�
dx

dt

�
2
+
�
dy

dt

�
2

r
dt= (dx)2+(dy)2

q
equals 1+

�
dy

dx

�
2

r
dx= (dx)2+(dy)2

q
from earlier.

Example 181. Using the parametric curve x= r cos(t), y= r sin(t) with parameter t2 [0; 2�],
find the circumference of a circle of radius r.

Solution. L=
Z
0

2�
�
dx
dt

�
2

+

�
dy
dt

�
2

s
dt=

Z
0

2�

r2 sin2(t)+ r2cos2(t)
q

dt=

Z
0

2�

rdt=2�r

Given a parametric curve x= f(t), y= g(t), we can compute ordinary derivatives as follows:

dy
dx

=

�
dy

dt

�
�
dx

dt

� �
=
g0(t)

f 0(t)

�

Likewise, writing y 0= dy

dx
:

d2y
dx2

= dy 0

dx
=

�
dy 0

dt

�
�
dx

dt

� 24=
�
d
dt
g 0(t)
f 0(t)

�
f 0(t)

=
g 00(t)f 0(t)¡ g0(t)f 00(t)

(f 0(t))3

35

Why? This is just the chain rule: dy
dx
=
dy

dt
� dt
dx

(in our case, dt
dx
=

1

f 0(t)
)

It tells us that we can replace d

dx
(the derivative with respect to x) with d

dt
if we multiply the result with dt

dx
.
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Example 182. Consider the parametric curve given by x= t2, y= t+1 with t> 0.

(a) Give an equivalent (non-parametric) Cartesian equation.

(b) Determine
dy
dx

and
d2y
dx2

at the point corresponding to t=1.

Solution.

(a) If x= t2, then t= x
p

, and so the curve is given by the Cartesian equation y= x
p

+1.
Comment. In general, eliminating the parameter, as we did here, may be difficult or impossible.

(b) In order to see that we are really computing the same thing, we proceed both from the Cartesian equation
y= x

p
+1 as well as from the parametric equations:

� (Cartesian equation) Starting with y(x)= x
p

+1, we have:

y 0(x) =
1

2 x
p =) y0(1)=

1

2 1
p =

1
2

y 00(x) = ¡1
4
x¡3/2 =) y 00(1)=¡1

4

� (parametric equations) We now use x= t2, y= t+1 to compute the same quantities:

dy
dx

=
dy/dt
dx/dt

=
1
2t

=)
�
dy
dx

�
t=1

=
1
2

d2y

dx2
=

dy 0

dx
=
dy0/dt
dx/dt

=
¡1/(2t2)

2t
=¡ 1

4t3
=)

�
d2y

dx2

�
t=1

=¡1
4
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