Our course website is: http://math227.straub.link

These lecture sketches, exam preparation problems, solutions and other course material will be posted there. All scores and grades, on the other hand, are posted to Sakai.

Review

Example 1. $\int_0^1 (1-x^2) dx =$ Solution. $\int_0^1 (1-x^2) dx = \left[x - \frac{x^3}{3}\right]_0^1 = \frac{2}{3}$

Comment. Interpret the integral as computing an area under the curve $1 - x^2$. From your (rough) sketch read off that the value of the integral has to be between $\frac{1}{2}$ and 1.

Polar coordinates and Euler's identity

Example 2. Draw a right-angled triangle with hypotenuse 1. Let θ be one of the other two angles. Express the lengths of the other sides in terms of trig functions.

The **polar coordinates** (r, θ) represent the point with **cartesian coordinates** $(x, y) = r(\cos \theta, \sin \theta)$.

Often, θ is taken from $[0, 2\pi)$ (but $(-\pi, \pi]$ is another popular choice), and, usually, $r \ge 0$.

Example 3. Which point (in cartesian coordinates) has polar coordinates r = 3, $\theta = \frac{\pi}{2}$? Solution. (x, y) = (0, 3)

Note. The polar coordinates r = 3, $\theta = \frac{\pi}{2} + 2\pi$ correspond to the same point. Polar coordinates are not quite unique.

Example 4. Find polar coordinates for the point with cartesian coordinates (-1, 1).

Solution. The polar coordinates of (-1,1) are $r = \sqrt{2}$ and $\theta = \frac{3\pi}{4}$

Example 5.
$$\int \sin(x) dx = -\cos(x) + C, \quad \int \sin^2(x) dx = ?$$

Example 6. $\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}$

Note. These sorts of trig identities are frequently useful. One can either remember them or, even better, understand how they follow from Euler's identity (below). For instance, the present identity is a consequence of $(e^x)^2 = e^{2x}$. [Note how, again, one side has the function squared and the other 2x in place of x.]

Theorem 7. (Euler's identity) $e^{i\theta} = \cos(\theta) + i\sin(\theta)$

A little more on Euler's identity (and how it explains trig identities) next time...