
Sketch of Lecture 3 Thu, 1/14/2016

Example 11. (continued)
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Solution. Continuing from last time,
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(As a homework and review, evaluate
∫

0

π/2
sin2 (θ)dθ via integration by parts; then use cos2=1− sin2 .)

Parametric curves

For instance, the motion of a particle in the xy-plane can be described by

x= f(t), y= g(t), t∈ [a, b],

where t is the parameter (in this case, e.g., time). The trajectory of the particle is what we
call a parametric curve.

This parametric curve has arc length L=
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Can you justify this formula with a sketch? Note that
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Example 12. x= cos (t), y= sin (t) with t∈ [0, 2π].

(a) Describe the parametric curve.

(b) What is the arclength of the curve?

Solution.

(a) This is a circle of radius 1 around the origin. The curve starts at (1, 0) (for t = 0) and returns to that
same point (for t=2π).

(b) L=
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Similarly, the motion of a particle in space can be described by adding a third coordinate

x= f(t), y= g(t), z= h(t), t∈ [a, b].

This parametric curve has arc length L=
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Example 13. What is the arclength of the curve x= cos (t), y= sin (t), z= t with t∈ [0, 2π]?

Our next goal is to start working with coordinates in space carefully. This is just a motivational example that
some things generalize to higher dimensions very pleasantly.
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