Sketch of Lecture 3 Thu, 1/14/2016

Example 11. (continued) / 0 1 $\sqrt{1-x^2} dx =$

Solution. Continuing from last time,

$$
\int_0^1 \sqrt{1 - x^2} \, dx = \int_{\pi/2}^0 \sqrt{1 - \cos^2(\theta)} \, (-\sin(\theta)) \, d\theta = \int_0^{\pi/2} \sqrt{1 - \cos^2(\theta)} \sin(\theta) \, d\theta.
$$

Observe that $\sqrt{1-\cos^2(\theta)}=\sqrt{\sin^2(\theta)}=\sin(\theta)$ (the last step is valid here because $\sin(\theta)\geqslant 0$ for $\theta\in[0,\pi/2]$; otherwise, we would have to worry about the sign in $\sqrt{\sin^2(\theta)} = \pm \sin(\theta)$). Therefore, our integral is

$$
\int_0^{\pi/2} \sqrt{1 - \cos^2(\theta)} \sin(\theta) d\theta = \int_0^{\pi/2} \sin^2(\theta) d\theta = \int_0^{\pi/2} \frac{1 - \cos(2\theta)}{2} d\theta = \left[\frac{\theta}{2} - \frac{\sin(2\theta)}{4} \right]_0^{\pi/2} = \frac{\pi}{4}.
$$

(As a homework and review, evaluate $\int_0^{\pi/2} \sin^2(\theta) d\theta$ via integration by parts; then use $\cos^2=1-\sin^2$.)

Parametric curves

For instance, the motion of a particle in the xy -plane can be described by

 $x = f(t), \quad y = g(t), \quad t \in [a, b],$

where t is the parameter (in this case, e.g., time). The trajectory of the particle is what we call a parametric curve.

This parametric curve has <mark>arc length</mark> $L = \sqrt{2}$ a $\int d\mathbf{x}$ dt \setminus^2 $+$ \int dy dt $\int (dx)^2 + (dy)^2$ dt.

Can you justify this formula with a sketch? Note that $\sqrt{(\frac{\mathrm{d}x}{\mathrm{d}t})^2}$ $\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)$ $\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \sqrt{(dx)^2 + (dy)^2}.$

Example 12. $x = \cos(t)$, $y = \sin(t)$ with $t \in [0, 2\pi]$.

- (a) Describe the parametric curve.
- (b) What is the arclength of the curve?

Solution.

(a) This is a circle of radius 1 around the origin. The curve starts at $(1,0)$ (for $t=0$) and returns to that same point (for $t = 2\pi$).

(b)
$$
L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_0^{2\pi} \sqrt{(-\sin t)^2 + (\cos t)^2} dt = \int_0^{2\pi} 1 dt = 2\pi
$$

Similarly, the motion of a particle in space can be described by adding a third coordinate

$$
x = f(t),
$$
 $y = g(t),$ $z = h(t),$ $t \in [a, b].$

This parametric curve has <mark>arc length</mark> $L = \sqrt{2}$ a $\int dx$ $\mathrm{d}t$ \setminus^2 $+$ \int dy $\mathrm{d}t$ \setminus^2 $+$ $\int dz$ dt $\int (dx)^2 + (dy)^2 + (dz)^2$ dt.

Example 13. What is the arclength of the curve $x = cos(t)$, $y = sin(t)$, $z = t$ with $t \in [0, 2\pi]$?

Our next goal is to start working with coordinates in space carefully. This is just a motivational example that some things generalize to higher dimensions very pleasantly.