Solution. For a parametrization, we choose a point in the plane together with two directions parallel to the plane. For instance,

$$
P(t) = (0,0,2) + s \underbrace{\langle 1,0,0 \rangle}_{\text{direction 1}} + t \underbrace{\langle 0,1,0 \rangle}_{\text{direction 2}} = (s,t,2).
$$

Note that we could have chosen a different point and different directions. For instance,

$$
P(t) = (3, 7, 2) + s \underbrace{(2, 2, 0)}_{\text{point}} + t \underbrace{(5, -1, 0)}_{\text{direction 1}} = (3 + 2s + 5t, 7 + 2s - t, 2).
$$

[In both cases, we get all points $(*,*,2)$, which are exactly the points on our plane.] In this simple case, it is clear that the plane is described by the equation $z = 2$ (or, $0x + 0y + 1z = 2$ to emphasize what we are going to get in general). What is the geometric meaning of such equations?

- Each plane in 3D has a unique normal direction: that's the direction which is perpendicular to the plane. A normal vector is a vector in that direction. It is unique up to scaling.
- A plane is characterized by one point P_0 together with a normal vector n; see Figure 11.39 in the book!
- Indeed, a point $P=(x,y,z)$ is on the plane $\iff P_0 P$ is perpendicular to $n \iff P_0 P \cdot n=0.$
- In our case, we can choose $P_0 = (0, 0, 2)$ and $n = (0, 0, 1)$.

Then, $\overrightarrow{P_0 P}\cdot \boldsymbol{n}=0$ is $\Big\lceil$ T $x - 0$ $y - 0$ $z - 2$ ı · Т \mathbf{I} 0 0 1 $= 0$. Simplified, we get $z - 2 = 0$, or $z = 2$, the desired equation.

Example 49. Find an equation for the plane through $A = (1, 1, 1)$, $B = (2, 1, 3)$, $C(3, -1, 1)$. **Solution.** $AB = \langle 1, 0, 2 \rangle$ and $AC = \langle 2, -2, 0 \rangle$ are parallel to the plane. Hence, we find a normal vector by computing $\boldsymbol{n} \!=\! \overrightarrow{AB} \times \overrightarrow{AC} \!=\! \left\lceil \right.$ \mathbf{I} 1 0 2 T \vert \times Т \mathbf{I} 2 $^{\mathrm{-2}}$ 0 = \mathbf{I} 4 4 $^{\mathrm{-2}}$. As point, we can choose $P_0 = A = (1, 1, 1)$. Then, a point $P = (x, y, z)$ is on the plane $\iff P_0 P \cdot n = 0$. That is, $\left\lceil$ \mathbf{I} $x - 1$ $y-1$ $z - 1$ T \mathbf{r} Т \mathbf{I} 4 4 $^{\mathrm{-2}}$ $\biggl] = 0$ or $4(x - 1) + 4(y - 1) - 2(z - 1) = 0$, which simplifies to $4x + 4y - 2z = 6$. Done!

[This equation is unique up to scaling: we could rescale it to $2x + 2y - z = 3$, for instance.]

Example 50. Find a vector normal to the plane $x + 2y - z = 3$.

Solution. $n = (1, 2, -1)$ (just taken from the coefficients; go through the previous example to see why the normal vector will always show up for these coefficients)

Comment. So, we understand the LHS of $x + 2y - z = 3$. The 3 on the other side is a measure for the distance of the plane from the origin (if n was a unit vector, then this would indeed be a distance).

Example 51. Find an equation for the plane parallel to $x + 2y - z = 3$ through $(1,1,1)$.

Solution. Since the planes are parallel, they have the same normal direction.

Our plane can therefore also be written as $x + 2y - z = d$ for some d.

To find d, we use that $(x, y, z) = (1, 1, 1)$ is a point on the plane: $1 + 2 \cdot 1 - 1 = d$, so $d = 0$.