Sketch of Lecture 17 Wed, 2/10/2016

In 2D, two lines are either parallel or they intersect in a unique point. In 3D (or higher dimensions), there is a new possibility: two lines can be **skew** (not intersecting but not parallel). [Actually, two "random" lines should be skew. Think about it!]

Example 58. (intersecting two lines) Do the lines L_1 with parametrization $\lceil x \rceil$ \mathbf{I} \overline{y} z T \vert = Т \mathbf{I} $\frac{1-t}{3t}$ $2+t$ T \mathbf{I} and L_2 with parametrization Т \mathbf{I} x \overline{y} z T \vert Т \mathbf{I} $2+t$ $-3 - t$
 $1 + 2t$ T intersect? If so, find the point of intersection.

Note. This coming out of nowhere: the point on L_1 corresponding to $t = -1$ is $(2, -3, 1)$. This same point is obtained from $t = 0$ in the parametrization of L_2 . So, this is the intersection we are looking for!

Solution. We have to solve the equations $3t_1 = -3 - t_2$ $1-t_1 = 2+t_2$ $2+t_1 = 1+2t_2$. [Why did we use t_1 and t_2 ?! Look at the note!]

We can solve for t_1 and t_2 using the first two equations: $3 \cdot \text{eq}_1 + \text{eq}_2$ is $3 = 3 + 2t_2$, which gives $t_2 = 0$. Substituting in eq₁, we get $1 - t_1 = 2 + 0$, which produces $t_1 = -1$.

We have to check whether $\rm eq_3$ holds, too: $2+(-1)$ $=$ $1+2\cdot 0$. It does, and so we have found an intersection. The point of intersection is $(2, -3, 1)$, corresponding to $t = -1$ in L_1 or $t = 0$ in L_2 .

Example 59. (intersecting two lines) Do the lines L_1 with parametrization Т \mathbf{I} x \overline{y} z T \vert = Т \mathbf{I} $\frac{1-t}{3t}$ $2+t$ T \mathbf{I} and L_2 with parametrization Т \mathbf{I} x \overline{y} z T \vert Т \mathbf{I} $2+t$ $3+t$ $1 + 2t$ T intersect? If so, find the point of intersection. **Solution.** We have to solve the equations $3t_1 = 3 + t_2$. $1-t_1 = 2+t_2$ $2 + t_1 = 1 + 2t_2$ $3 \cdot \text{eq}_1 + \text{eq}_2$ is $3 = 9 + 4t_2$, which gives $t_2 = -\frac{3}{2}$ $\frac{3}{2}$. Substituting in eq1, we get $1-t_1$ $=$ $2-\frac{3}{2}$ $\frac{3}{2}$ and so $t_1 = \frac{1}{2}$ $\frac{1}{2}$. We have to check whether eq₃ holds, too: $2 + \frac{1}{2} \cdot \frac{??}{=} 1 + 2\left(-\frac{3}{2}\right)$ $\frac{3}{2}$). This is not true. This means that the lines do not intersect. They are skew.

Recall from Lecture 13:

The **distance** between a point S and the line through P, with direction v is $d =$ $\overline{}$ $\overline{}$ $\overline{1}$ $PS \times v$ $\overline{}$ $\overline{}$ $\overline{}$ $|\bm{v}|$.

Very similarly, we have:

The **distance** between a point S and the plane through P, with normal n is $d =$ I $\overline{}$ $\overrightarrow{PS} \cdot \boldsymbol{n}$ $\overline{}$ $|\boldsymbol{n}|$

Why? See Figure 11.41 in the book.

Note that the distance is the length of the projection of PS onto $\boldsymbol{n}.$

Example 60. What is the distance between $S = (2,3,0)$ and the plane $2x + 2y - z = 3$? **Solution.** From the equation, we see that $n = (2, 2, -1)$ is a normal vector for our plane.

We can choose any point P on the plane; an easy one is $P = (0, 0, -3)$. [The z-intercept; see Lecture 15.]

Then, d $=$ $\frac{\left|\overrightarrow{PS}\cdot\overrightarrow{n}\right|}{\left|\overrightarrow{n}\right|}$ = IF Ш 2 3 3 T \mathbf{r} Т \mathbf{I} 2 2 −1 ור Ш / $\begin{array}{c} \hline \end{array}$ IF Ш 2 2 −1 ı Ш $=\frac{|4+6-3|}{\sqrt{4+4+1}}=\frac{7}{3}$ $\frac{1}{3}$.

Armin Straub straub@southalabama.edu .

 $\overline{}$