
Sketch of Lecture 17 Wed, 2/10/2016

In 2D, two lines are either parallel or they intersect in a unique point. In 3D (or higher
dimensions), there is a new possibility: two lines can be skew (not intersecting but not parallel).

[Actually, two “random” lines should be skew. Think about it!]

Example 58. (intersecting two lines) Do the lines L1 with parametrization
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and L2 with parametrization
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 intersect? If so, find the point of intersection.

Note. This coming out of nowhere: the point on L1 corresponding to t=−1 is (2,−3, 1). This same point
is obtained from t=0 in the parametrization of L2. So, this is the intersection we are looking for!

Solution. We have to solve the equations
1− t1 = 2+ t2
3t1 = −3− t2

2+ t1 = 1+2t2

. [Why did we use t1 and t2?! Look at the note!]

We can solve for t1 and t2 using the first two equations: 3 · eq1+ eq2 is 3= 3+ 2t2, which gives t2=0.

Substituting in eq1, we get 1− t1=2+0, which produces t1=−1.

We have to check whether eq3 holds, too: 2+(−1)@
??

1+2 ·0. It does, and so we have found an intersection.
The point of intersection is (2,−3, 1), corresponding to t=−1 in L1 or t=0 in L2.

Example 59. (intersecting two lines) Do the lines L1 with parametrization
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and L2 with parametrization
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 intersect? If so, find the point of intersection.

Solution. We have to solve the equations
1− t1 = 2+ t2
3t1 = 3+ t2

2+ t1 = 1+2t2

.

3 · eq1+ eq2 is 3=9+4t2, which gives t2=−3

2
. Substituting in eq1, we get 1− t1=2− 3

2
and so t1=
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We have to check whether eq3 holds, too: 2+
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. This is not true. This means that the lines

do not intersect. They are skew.

Recall from Lecture 13:

The distance between a point S and the line through P , with direction v is d=
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Very similarly, we have:

The distance between a point S and the plane through P , with normal n is d=
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Why? See Figure 11.41 in the book.

Note that the distance is the length of the projection of PS
�

onto n.

Example 60. What is the distance between S= (2, 3, 0) and the plane 2x+2y− z=3?

Solution. From the equation, we see that n= (2, 2,−1) is a normal vector for our plane.

We can choose any point P on the plane; an easy one is P =(0,0,−3). [The z-intercept; see Lecture 15.]
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