Sketch of Lecture 17

In 2D, two lines are either parallel or they intersect in a unique point. In 3D (or higher dimensions), there is a new possibility: two lines can be **skew** (not intersecting but not parallel). [Actually, two "random" lines should be skew. Think about it!]

Example 58. (intersecting two lines) Do the lines L_1 with parametrization $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1-t \\ 3t \\ 2+t \end{bmatrix}$ and L_2 with parametrization $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2+t \\ -3-t \\ 1+2t \end{bmatrix}$ intersect? If so, find the point of intersection.

Note. This coming out of nowhere: the point on L_1 corresponding to t = -1 is (2, -3, 1). This same point is obtained from t = 0 in the parametrization of L_2 . So, this is the intersection we are looking for!

Solution. We have to solve the equations $\begin{array}{rl} 1-t_1&=&2+t_2\\ 3t_1&=&-3-t_2\\ 2+t_1&=&1+2t_2 \end{array}$ [Why did we use t_1 and t_2 ?! Look at the note!]

We can solve for t_1 and t_2 using the first two equations: $3 \cdot eq_1 + eq_2$ is $3 = 3 + 2t_2$, which gives $t_2 = 0$. Substituting in eq₁, we get $1 - t_1 = 2 + 0$, which produces $t_1 = -1$.

We have to check whether eq₃ holds, too: $2 + (-1) \stackrel{??}{=} 1 + 2 \cdot 0$. It does, and so we have found an intersection. The point of intersection is (2, -3, 1), corresponding to t = -1 in L_1 or t = 0 in L_2 .

Example 59. (intersecting two lines) Do the lines L_1 with parametrization $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1-t \\ 3t \\ 2+t \end{bmatrix}$ and L_2 with parametrization $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2+t \\ 3+t \\ 1+2t \end{bmatrix}$ intersect? If so, find the point of intersection. **Solution**. We have to solve the equations $\begin{array}{c} 1-t_1 = 2+t_2 \\ 3t_1 = 3+t_2 \\ 2+t_1 = 1+2t_2 \end{array}$ $3 \cdot eq_1 + eq_2$ is $3 = 9 + 4t_2$, which gives $t_2 = -\frac{3}{2}$. Substituting in eq_1, we get $1-t_1 = 2 - \frac{3}{2}$ and so $t_1 = \frac{1}{2}$. We have to check whether eq_3 holds, too: $2 + \frac{1}{2} \stackrel{??}{=} 1 + 2\left(-\frac{3}{2}\right)$. This is not true. This means that the lines do not intersect. They are skew.

Recall from Lecture 13:

The **distance** between a point S and the line through P, with direction \boldsymbol{v} is $d = \frac{|PS \times \boldsymbol{v}|}{|\boldsymbol{v}|}$.

Very similarly, we have:

The **distance** between a point S and the plane through P, with normal **n** is $d = \frac{|PS \cdot n|}{|n|}$

Why? See Figure 11.41 in the book.

Note that the distance is the length of the projection of \overrightarrow{PS} onto n.

Example 60. What is the distance between S = (2, 3, 0) and the plane 2x + 2y - z = 3? Solution. From the equation, we see that n = (2, 2, -1) is a normal vector for our plane.

We can choose any point P on the plane; an easy one is P = (0, 0, -3). [The z-intercept; see Lecture 15.]

Then, $d = \frac{\left|\overrightarrow{PS} \cdot n\right|}{|n|} = \left| \begin{bmatrix} 2\\3\\3 \end{bmatrix} \cdot \begin{bmatrix} 2\\2\\-1 \end{bmatrix} \right| / \left| \begin{bmatrix} 2\\2\\-1 \end{bmatrix} \right| = \frac{|4+6-3|}{\sqrt{4+4+1}} = \frac{7}{3}.$

Armin Straub straub@southalabama.edu