Sketch of Lecture 18

Example 61. Are the lines parametrized as $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 1+6t \\ 3t \end{bmatrix}$ and $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 3+2t \\ 1+t \end{bmatrix}$ the same? **Solution**. The direction vectors are $\mathbf{v}_1 = \begin{bmatrix} 0 \\ 6 \\ 3 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$. They are multiples of each other ($\mathbf{v}_1 = 3\mathbf{v}_2$), which means that the two lines are parallel. To decide whether the lines are the same we can check whether they share a point such as $\begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix}$ (the base point of line 1). Since $\begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 3+2t \\ 1+t \end{bmatrix}$ for t = -1, this point is also on line 2. Hence, the two lines are the same. [We could have also checked if the lines have 2 points in common.] **Example 62.** Find the point R on the plane 2x + 2y - z = 3 closest to S = (2, 3, 0). **Solution**. Realize that the vector \overrightarrow{RS} has to perpendicular to the plane. Hence, the line through R and S has direction \mathbf{n} . We can find the point on the plane closest to S by intersecting the plane 2x + 2y - z = 3 with the line through S and direction $\mathbf{n} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$. That line has parametrization $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = S + t\mathbf{n} = \begin{bmatrix} 2+2t \\ 3+2t \\ -t \end{bmatrix}$. We substitute the coordinates of points on the line into the equation for our plane: 2(2+2t) + 2(3+2t) - (-t) = 3 (which simplifies to 10 + 9t = 3). Solving for t, we obtain $t = -\frac{7}{9}$. The corresponding point on the line is $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 4 \\ 13 \\ 7 \end{bmatrix}$. This is R.

Exercise. Compute the distance between R and S. (It has to be $\frac{7}{3}$, the distance we computed last time.)

Vector functions

Vector functions in 3D are functions of the form $\boldsymbol{r}(t) = \begin{bmatrix} f(t) \\ g(t) \\ h(t) \end{bmatrix}$.

Example 63. We have already seen examples in the form of parametrizations of curves:

$$P(t) = \begin{bmatrix} 1-t\\2+3t\\7t \end{bmatrix} \quad (\text{line}), \quad P(t) = \begin{bmatrix} \cos(t)\\\sin(t) \end{bmatrix} \quad (\text{circle}), \quad P(t) = \begin{bmatrix} \cos(t)\\\sin(t)\\t \end{bmatrix} \quad (\text{"spiral up"}).$$

Many of the concepts we are familiar with from (scalar) functions, extend to vector functions componentwise. For instance, the **derivative** of $\mathbf{r}(t) = \begin{bmatrix} f(t) \\ g(t) \\ h(t) \end{bmatrix}$ is $\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \mathbf{r}'(t) = \begin{bmatrix} f'(t) \\ g'(t) \\ h'(t) \end{bmatrix}$.

 $r'(t_0)$ is the **tangent vector** at $t = t_0$ to the curve parametrized as r(t). The **tangent line** at $t = t_0$ is the line through $r(t_0)$ parallel to $r'(t_0)$.

Example 64. If $P(t) = \begin{bmatrix} 1-t \\ 2+3t \\ 7t \end{bmatrix}$, then $P'(t) = \begin{bmatrix} -1 \\ 3 \\ 7 \end{bmatrix}$. The tangent vector is the same for all values of t. Clearly, this is just the direction vector.

Example 65. Find (a parametrization of) the tangent line to the curve $P(t) = \begin{bmatrix} e^{t^2} \\ t^2 - 1 \\ t \end{bmatrix}$ at t = 0. **Solution**. The tangent line goes through $P(0) = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ and has direction $P'(0) = \begin{bmatrix} 2te^{t^2} \\ 2t \\ 1 \end{bmatrix}_{t=0} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Hence, it is parametrized by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ t \end{bmatrix}$.

Armin Straub straub@southalabama.edu