Sketch of Lecture 20

Example 69. Let $P(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \\ t \end{bmatrix}$ be the position of a particle at time t. Find its velocity, speed and acceleration at time t. What is the distance traveled between t = 0 and $t = 2\pi$? Solution. The velocity is $v(t) = P'(t) = \begin{bmatrix} -\sin(t) \\ \cos(t) \\ 1 \end{bmatrix}$. The speed is $|v(t)| = \sqrt{(-\sin t)^2 + (\cos t)^2 + 1^2} = \sqrt{2}$.

(Again, constant speed!)

The acceleration is $\mathbf{a}(t) = P''(t) = \begin{bmatrix} -\cos(t) \\ -\sin(t) \\ 0 \end{bmatrix}$. (Because of constant speed, $\mathbf{a} \cdot \mathbf{v} = 0$. Check!)

The distance traveled is $\int_{0}^{2\pi} |\boldsymbol{v}(t)| dt = 2\pi\sqrt{2}$.

[Recall from Lecture 3 that we just computed the arc length of the parametric curve P(t) for $t \in [0, 2\pi]$.]

The **acceleration** splits into two natural parts: $\mathbf{a} = \mathbf{a}_T + \mathbf{a}_N$

- The tangential part a_T of the acceleration is the projection of the acceleration in the direction of motion: $a_T = \operatorname{proj}_{v} a = \frac{a \cdot v}{|v|^2} v$.
- The other part of the acceleration is the **normal part** $a_N = a a_T$.

Why is the normal part always perpendicular to the direction of motion? (This explains the "normal".)

 a_T is the projection of a onto v. The "error" $a_N = a - a_T$ is always perpendicular to the projection.

Example 70. Let $P(t) = \begin{bmatrix} \cos{(t^2)} \\ \sin{(t^2)} \end{bmatrix}$ be the position of a particle at time t. Find its velocity, speed and acceleration at time t. Determine the tangential and normal part of the acceleration. Note. This particle is still traveling along a circle. However, the particle is speeding up with increasing time.

Solution. The velocity is $\mathbf{v}(t) = P'(t) = \begin{bmatrix} -2t\sin(t^2) \\ 2t\cos(t^2) \end{bmatrix}$. The speed is $|\mathbf{v}(t)| = \sqrt{(-2t\sin(t^2))^2 + (2t\cos(t^2))^2} = 2|t|$. (Our particle is speeding up with t.) The acceleration is $\mathbf{a}(t) = P''(t) = \begin{bmatrix} -2\sin(t^2) - 4t^2\cos(t^2) \\ 2\cos(t^2) - 4t^2\sin(t^2) \end{bmatrix}$. For the tangential part \mathbf{a}_T , we need to project $\mathbf{a}(t)$ onto $\mathbf{v}(t)$. This projection is (recall that $|\mathbf{v}|^2 = 4t^2$)

$$\frac{\boldsymbol{a} \cdot \boldsymbol{v}}{|\boldsymbol{v}|^2} \, \boldsymbol{v} = \frac{4t}{4t^2} \begin{bmatrix} -2t\sin\left(t^2\right) \\ 2t\cos\left(t^2\right) \end{bmatrix} = \begin{bmatrix} -2\sin(t^2) \\ 2\cos(t^2) \end{bmatrix}$$

where we used $|\boldsymbol{v}|^2 = 4t^2$ and

$$\boldsymbol{a}\cdot\boldsymbol{v} = -2t\sin{(t^2)}[-2{\sin(t^2)} - 4t^2\cos{(t^2)}] + 2t\cos{(t^2)}[2\cos(t^2) - 4t^2\sin{(t^2)}] = 4t$$

The normal part of the acceleration then is $\boldsymbol{a}_N = \boldsymbol{a} - \boldsymbol{a}_T = \begin{bmatrix} -4t^2 \cos{(t^2)} \\ -4t^2 \sin{(t^2)} \end{bmatrix}$.

[In this particular case, we could have seen this decomposition of a by staring at it. Do you see it in hindsight?]

Remark 71. What we just did in 2D, can be done in any higher dimension.

In particular, we have two important (perpendicular!) directions associated with a curve:

- The unit tangent vector $T = \frac{v}{|v|}$ (unless v = 0).
- The (principal) unit normal vector $N = \frac{a_N}{|a_N|}$ (unless $a_N = 0$).
- If in 3D, then the unit binormal vector $B = T \times N$ is a third perpendicular direction.

Together, T, N, B are a natural substitute for i, j, k when working with the curve at hand. The corresponding coordinate system is often called the TNB frame (or, Frenet frame).