Sketch of Lecture 20 Mon, 2/15/2016

Example 69. Let $P(t) =$ Т \mathbf{I} $\cos{(t)}$ $\sin{(t)}$ t T be the position of a particle at time t . Find its velocity, speed and acceleration at time t. What is the distance traveled between $t = 0$ and $t = 2\pi$?

 ${\sf Solution.}$ The velocity is $\bm{v}(t)\!=\!P'(t)\!=\!\widehat{\bm{\mathsf{F}}}$ \mathbf{I} $-\sin(t)$
cos (t) 1 . The speed is $|v(t)| = \sqrt{(-\sin t)^2 + (\cos t)^2 + 1^2} = \sqrt{2}$. (Again, constant speed!)

The acceleration is $\boldsymbol{a}(t)$ $\!=$ $\!P''(t)$ $\!=$ $\!\!\!\left\lceil \right\rceil$ \mathbf{I} $-\cos(t)$ $-\sin(t)$
0 . (Because of constant speed, $\boldsymbol{a} \cdot \boldsymbol{v} = 0$. Check!)

The <mark>distance traveled</mark> is $\int_{0}^{2\pi}$ 2^{π} |**v**(t)| dt = $2\pi\sqrt{2}$.

[Recall from Lecture 3 that we just computed the arc length of the parametric curve $P(t)$ for $t \in [0,2\pi].$]

The **acceleration** splits into two natural parts: $a = a_T + a_N$

- The tangential part a_T of the acceleration is the projection of the acceleration in the direction of motion: $a_T = \text{proj}_v a = \frac{a \cdot v}{|v|^2}$ $\frac{\bm{u}\cdot\bm{v}}{|\bm{v}|^2}\bm{v}.$
- The other part of the acceleration is the **normal part** $a_N = a a_T$.

Why is the normal part always perpendicular to the direction of motion? (This explains the "normal".)

 a_T is the projection of a onto v. The "error" $a_N = a - a_T$ is always perpendicular to the projection.

Example 70. Let $P(t) = \int_{\sin(t/2)}^{\cos(t^2)}$ $\sin{(t^2)}$ $\big]$ be the position of a particle at time $t.$ Find its velocity, speed and acceleration at time t . Determine the tangential and normal part of the acceleration. Note. This particle is still traveling along a circle. However, the particle is speeding up with increasing time.

Solution. The velocity is $\mathbf{v}(t) = P'(t) = \begin{bmatrix} -2t \sin(t^2) \\ 0 & 2t \cos(t^2) \end{bmatrix}$ $2t\cos{(t^2)}$ # . The speed is $|v(t)| = \sqrt{(-2t\sin(t^2))^2 + (2t\cos(t^2))^2} = 2|t|$. (Our particle is speeding up with t.) The acceleration is $a(t) = P''(t) = \begin{bmatrix} -2\sin(t^2) - 4t^2\cos(t^2) \\ 2\cos(t^2) - 4t^2\sin(t^2) \end{bmatrix}$ $2\cos(t^2) - 4t^2 \sin(t^2)$ # . For the tangential part \bm{a}_T , we need to project $\bm{a}(t)$ onto $\bm{v}(t)$. This projection is (recall that $|\bm{v}|^2\!=\!4t^2)$

$$
\frac{\mathbf{a} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v} = \frac{4t}{4t^2} \begin{bmatrix} -2t\sin(t^2) \\ 2t\cos(t^2) \end{bmatrix} = \begin{bmatrix} -2\sin(t^2) \\ 2\cos(t^2) \end{bmatrix},
$$

where we used $|\boldsymbol{v}|^2\!=\!4t^2$ and

$$
\mathbf{a} \cdot \mathbf{v} = -2t \sin(t^2) [-2\sin(t^2) - 4t^2 \cos(t^2)] + 2t \cos(t^2) [2\cos(t^2) - 4t^2 \sin(t^2)] = 4t.
$$

The normal part of the acceleration then is $\bm{a}_N\!=\!\bm{a}-\bm{a}_T\!=\!\left[\begin{array}{c} -4t^2\cos{(t^2)}\ -4t^2\sin{(t^2)}\end{array}\right]$ $-4t^2\sin(t^2)$ # .

[In this particular case, we could have seen this decomposition of a by staring at it. Do you see it in hindsight?]

Remark 71. What we just did in 2D, can be done in any higher dimension.

In particular, we have two important (perpendicular!) directions associated with a curve:

- The unit tangent vector $T\!=\!\frac{v}{|v|}$ $\frac{v}{|v|}$ (unless $v = 0$).
- The (principal) unit normal vector $\bm{N}\!=\!\frac{\bm{a}_N}{|\bm{a}_N|}$ $\frac{a_N}{|a_N|}$ (unless $a_N=0$).
- If in 3D, then the unit binormal vector $B = T \times N$ is a third perpendicular direction.

Together, T, N, B are a natural substitute for i, j, k when working with the curve at hand. The corresponding coordinate system is often called the TNB frame (or, Frenet frame).