Sketch of Lecture 25

Example 85. Find the linearization of $f(x, y, z) = x^2 + y^2 + z^2$ at (1, 2, 3). **Solution.** f(1, 2, 3) = 14, $f_x(1, 2, 3) = [2x]_{x=1} = 2$, $f_y(1, 2, 3) = [2y]_{y=2} = 4$, $f_z(1, 2, 3) = [2z]_{z=3} = 6$ Hence, the desired linearization is L(x, y, z) = 14 + 2(x - 1) + 4(y - 2) + 6(z - 3).

The linearization of f(x, y) at (x_0, y_0) is a good approximation around (x_0, y_0) if and only if f(x, y) is **differentiable** at (x_0, y_0) . [We make this precise below.]

Calculus I. f(x) is differentiable at x_0 if, for some A,

$$f(x) = f(x_0) + A(x - x_0) + \underbrace{\text{"small" error}}_{=\varepsilon(x - x_0) \text{ with } \varepsilon \to 0 \text{ as } x \to x_0},$$

in which case the derivative is $f'(x_0) = A$. You surely remember $f'(x) \approx \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$. Calculus III. Likewise, f(x, y) is differentiable at (x_0, y_0) if, for some A and B,

$$f(x, y) = f(x_0, y_0) + A(x - x_0) + B(y - y_0) + \underbrace{\varepsilon_1(x - x_0) + \varepsilon_2(y - y_0)}_{\text{"small" error}}.$$
 (DIFF)

In that case, $A = f_x(x_0, y_0)$ and $B = f_y(x_0, y_0)$. [Again, "small" means that $\varepsilon_1, \varepsilon_2 \to 0$ as both $x \to x_0$ and $y \to y_0$.]

Theorem 86.	lf †	r_{r} and	f_{n}	are continuous	around ((x_0, y_0) ,	then	f is differentiable at (x_0, y_0).
-------------	------	-------------	---------	----------------	----------	----------------	------	--------------------------	------------	----

This is good news because, in this case, we can avoid working with the technical condition (DIFF) directly. [Note that it is not enough that the *partial* derivatives $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ exist if we want to conclude that f is differentiable (or even continuous!) at (x_0, y_0) . See Figure 13.20 in the book for a cautionary example, which we might discuss in more detail later.]

The chain rule

If we write the condition (DIFF) of differentiability as $\Delta f \approx f_x \Delta x + f_y \Delta y$, divide both sides by Δt and take the limit as $\Delta t \rightarrow 0$, we arrive at the following chain rule.

(Chain rule, Part I) In the situation
$$f(x, y)$$
 with $x = x(t)$, $y = y(t)$ depending on t , we have

$$\frac{d}{dt}f(x(t), y(t)) = f_x(x(t), y(t))x'(t) + f_y(x(t), y(t))y'(t),$$
or, for short, $\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$. [Contrast this with the chain rule for $f(x)$ with $x = x(t)!$]

Fine print: f(x, y) needs to be differentiable, and x(t), y(t) need to be differentiable.

Example 87. Let $w = 2x^2y$ and $x = \cos(2t)$, $y = t^3$. Find $\frac{dw}{dt}$ (in terms of t) in two ways: (a) by expressing w in terms of t and differentiating directly,

(b) by using the chain rule.

Solution.

(a)
$$\frac{dw}{dt} = \frac{d}{dt} \Big[2\cos^2(2t)t^3 \Big] = 4\cos(2t)(-2\sin(2t)) \cdot t^3 + 2\cos^2(2t) \cdot 3t^2 = -8t^3\cos(2t)\sin(2t) + 6t^2\cos^2(2t).$$

(b)
$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} = 4xy \cdot (-2\sin(2t)) + 2x^2 \cdot 3t^2$$

Since we are asked to write this in terms of t,
$$\frac{dw}{dt} = -8t^3\cos(2t)\sin(2t) + 6t^2\cos^2(2t).$$

Armin Straub straub@southalabama.edu