Example 104. Find all local maxima, local minima and saddle points of the function $f(x,$ $y) = 6x^2 - 2x^3 + 3y^2 + 6xy.$

Solution. To find the critical points, we need to solve the two equations $f_x = 12x - 6x^2 + 6y = 0$ and $f_y = 6y + 6x = 0$ for the two unknowns x, y .

[A general strategy is to solve one equation for one variable (in terms of the other), and substitute that in the other equation. Then we have a single equation in a single variable, which we can solve.]

Here, the second equation simplifies to $y = -x$. Substituting that in the first equation, we get $12x - 6x^2 - 6x =$ $6x - 6x^2 = 6x(1 - x)$. Hence, $x = 0$ or $x = 1$.

If $x=0$ then $y = -x = 0$, and we get the point $(0, 0)$. If $x = 1$ then $y = -x = -1$, and we get the point $(1, -1)$. In conclusion, the critical points are $(0, 0)$, $(1, -1)$.

 $\left[f_{xx}f_{yy}-f_{xy}^{2}\right]$ $_{(0,0)}$ = $[(12-12x)\cdot 6-6^2]$ $(0,0)$ = 36 > 0 and f_{xx} = 12 > 0. Hence, $(0,0)$ is a local minimum. $\left[f_{xx}f_{yy}-f_{xy}^{2}\right]$ $(1,-1)$ $= \left[(12 - 12x) \cdot 6 - 6^2 \right]$ $(1,-1)$ = -36 < 0. Hence, $(1,-1)$ is a saddle point.

Example 105. (a simple saddle point) Find the local extreme values of $f(x, y) = x^2 - y^2$. Solution. $f_x = 2x = 0$ gives $x = 0$, and $f_y = -2y = 0$ gives $y = 0$. Only critical points: $(0, 0)$ $f_{xx}f_{yy} - f_{xy}^2 = 2 \cdot (-2) - 0 = -4 < 0$. Hence, $(0,0)$ is a saddle point.

Comment. Make a sketch of the graph of $f(x, y)$ restricted to the xz -plane (this restriction has a minimum at the origin) and another sketch restricted to the yz -plane (this restriction has a maximum at the origin). See Figure 13.44 in our book for a 3-dimensional sketch. It looks like the saddle for horseback riding!

Lagrange multipliers

(Lagrange multipliers) To find local extrema of $f(x, y, z)$ subject to the constraint $g(x, z)$ y, z) = 0, find values x, y, z, λ such that

$$
\nabla f = \lambda \nabla g
$$
 and $g(x, y, z) = 0$.

Fine print: of course, f and g need to be differentiable. We also need $\nabla g \neq 0$ when $g(x,y,z)$ $=$ $0.$

In other words, at such a local extremum, we should have that ∇f and ∇g point in the same direction! Why? The derivative of f in directions u allowed by the constraint should be zero. Since these directional derivatives are $\nabla f \cdot u$, this means that ∇f should be orthogonal to $g(x, y, z) = 0$. That in turn means that ∇f and ∇g point in the same direction. [If you can reproduce this argument, you really understand the [If you can reproduce this argument, you really understand the gradient!]

Let us redo Example [62](#page--1-0) using this new machinery.

Example 106. Find the point R on the plane $2x + 2y - z = 3$ closest to $S = (2, 3, 0)$.

Solution. First off, let us write this as a minimization problem. We wish to minimize $f(x, y, z) = (x - 2)^2 + 1$ $(y-3)^2 - z^2$ subject to the constraint $g(x, y, z) = 2x + 2y - z - 3 = 0$.

 $\nabla f =$ \mathbf{I} $2(x - 2)$ $\frac{2(y-3)}{2z}$ $\Big\}, \nabla g = \Big[$ \mathbf{I} 2 2 −1 . We need to solve the four equations $2(x-2) = 2\lambda$, $2(y-3) = 2\lambda$, $2z = -\lambda$,

 $2x+2y-z-3=0$ for the four unknowns λ, x, y, z .

Try to do it! (The equations are linear, so exactly the kind you learn to solve systematically in linear algebra.) Г

In the end, we find $\lambda\!=\!-\!\frac{14}{9}$ $\frac{14}{9}$, $x = \frac{4}{9}$ $\frac{4}{9}$, $y = \frac{13}{9}$ $\frac{13}{9}$, $z = \frac{7}{9}$ $rac{7}{9}$. Hence, $R=\frac{1}{9}$ 9 ĩ. 4 13 7 $\Big\}$, as in our previous solution.