Review. \int R $f(x, y)$ d A where R is $0 \leqslant x \leqslant 2$, $x^2 \leqslant y \leqslant 2x$.

Taking (first vertical, then horizontal) cross-sections of R we arrive at the following two iterated $integ$ rals: \int 0 2 Z x^2 $\overline{2x}$ $f(x, y) dy dx =$ 0 $\frac{4}{\sqrt{2}}$ $y/2$ \sqrt{y} $f(x, y)dxdy.$

The fact that we can interchange the order of integration is known as **Fubini's theorem**.

Example 109.
$$
\iint_R \frac{\sin x}{x} dy dx
$$
 where the region R is bounded by $y = 0$, $y = x$, $x = 1$.

Make a sketch of the region!

Solution. (vertical cross-sections) Here, we fix x and then let y range. The range for x is $0 \le x \le 1$. The corresponding range of y is $0 \leq y \leq x$ (from the point on $y = 0$ to the point on $y = x$).

Hence, we get $\displaystyle \int_0$ $\mathbf{1}$ 0 $x \sin x$ $\frac{d\mathbf{x}}{dx}$ d $y\mathrm{d}x$. This is easy to compute! (Note that the integrand does not depend on y .) $\overline{}$ 0 $\mathbf{1}$ 0 $\int x \sin x$ $\int \frac{\ln x}{x} \, \mathrm{d}y \, \mathrm{d}x = \int$ 0 ¹ $\sin x$ $\frac{\ln x}{x}(x-0)dx = \int$ 0 $\int \sin x dx = \left[-\cos x\right]$ $x=0$ $\frac{x=1}{x=0} = 1 - \cos 1.$

Solution. (horizontal cross-sections) Here, we fix y and then let x range. The range for y is $0 \leq y \leq 1$. The corresponding range of x is $y \leq x \leq 1$ (from the point on $y = x$ to the point on $x = 1$).

Hence, we get $\displaystyle\int_0$ $\mathbf{1}$ \overline{y} ¹ $\sin x$ $\frac{\ln x}{x}$ dxdy.

In contrast to the previous case, we get stuck with this integral. That's because it is not possible to write down an antiderivative for $\frac{\sin x}{x}$ using our repertoire of functions. (Of course, the integral has the same value as the one before.)

Note. This example illustrates that interchanging the order of integration can make a huge difference.

The area of a region R in 2D is given by \int \int R dA.

Just like $\displaystyle\int_a$ $\stackrel{b}{\mathrm{d}} x = b-a$ is the length of the interval $[a,b],$ and $\displaystyle\int\!\!\int\!\!\int_D{\mathrm{d}} V$ is the volume of a region D in 3D. The integral above is often taken as the definition of area!

Example 110. Consider the region R with $x^2 + y^2 \leq 1$ and $x + y \geq 1$. Write down an iterated integral for the area of R using vertical cross-sections.

Solution. Make a sketch! (See Figure 14.14 in our book.) Vertical cross-sections means fixing x (with $0 \leq x \leq 1$) and deciding on the appropriate range for y. The sketch reveals that this range is $1-x\leqslant y\leqslant \sqrt{1-y^2}.$ Hence, $\text{area}(R)=\displaystyle\int_0^{\frac{\pi}{2}}\!\!\!\!\!\!$ $\mathbf{1}$ $1-x$ $\sqrt{1-x^2}$ $dydx$. **Exercise.** Compute this iterated integral. (For geometric reasons, we already know that $\text{area}(R) = \frac{\pi}{4} - \frac{1}{2}$ $\frac{1}{2}$.)

Note. Since x and y play a symmetric role in the definition of R , horizontal cross-sections will lead to the same integral (with x and y swapped). Do it!