Review. $\iint_R f(x, y) dA$ where R is $0 \leq x \leq 2$, $x^2 \leq y \leq 2x$.

Taking (first vertical, then horizontal) cross-sections of R we arrive at the following two iterated integrals: $\int_0^2 \int_{x^2}^{2x} f(x, y) \, dy \, dx = \int_0^4 \int_{y/2}^{\sqrt{y}} f(x, y) \, dx \, dy.$

The fact that we can interchange the order of integration is known as Fubini's theorem.

Example 109.
$$\iint_R \frac{\sin x}{x} dy dx$$
 where the region R is bounded by $y = 0$, $y = x$, $x = 1$.

Make a sketch of the region!

Solution. (vertical cross-sections) Here, we fix x and then let y range. The range for x is $0 \le x \le 1$. The corresponding range of y is $0 \le y \le x$ (from the point on y = 0 to the point on y = x).

Hence, we get $\int_0^1 \int_0^x \frac{\sin x}{x} dy dx$. This is easy to compute! (Note that the integrand does not depend on y.) $\int_0^1 \int_0^x \frac{\sin x}{x} dy dx = \int_0^1 \frac{\sin x}{x} (x-0) dx = \int_0^1 \sin x dx = \left[-\cos x\right]_{x=0}^{x=1} = 1 - \cos 1.$

Solution. (horizontal cross-sections) Here, we fix y and then let x range. The range for y is $0 \le y \le 1$. The corresponding range of x is $y \le x \le 1$ (from the point on y = x to the point on x = 1).

Hence, we get $\int_0^1 \int_y^1 \frac{\sin x}{x} \, \mathrm{d}x \mathrm{d}y.$

In contrast to the previous case, we get stuck with this integral. That's because it is not possible to write down an antiderivative for $\frac{\sin x}{x}$ using our repertoire of functions. (Of course, the integral has the same value as the one before.)

Note. This example illustrates that interchanging the order of integration can make a huge difference.

The **area** of a region R in 2D is given by $\iint_{R} dA$.

Just like $\int_{a}^{b} dx = b - a$ is the length of the interval [a, b], and $\iiint_{D} dV$ is the volume of a region D in 3D. The integral above is often taken as the definition of area!

Example 110. Consider the region R with $x^2 + y^2 \le 1$ and $x + y \ge 1$. Write down an iterated integral for the area of R using vertical cross-sections.

Solution. Make a sketch! (See Figure 14.14 in our book.) Vertical cross-sections means fixing x (with $0 \le x \le 1$) and deciding on the appropriate range for y. The sketch reveals that this range is $1 - x \le y \le \sqrt{1 - y^2}$. Hence, $\operatorname{area}(R) = \int_0^1 \int_{1-x}^{\sqrt{1-x^2}} \mathrm{d}y \mathrm{d}x$. **Exercise.** Compute this iterated integral. (For geometric reasons, we already know that $\operatorname{area}(R) = \frac{\pi}{4} - \frac{1}{2}$.)

Note. Since x and y play a symmetric role in the definition of R, horizontal cross-sections will lead to the same integral (with x and y swapped). Do it!