Example 111. (warmup) Compute the area of the region R bounded by $y = 0$, $y = 2x$, $x = 1$. **Solution. (just a triangle!)** This is a triangle with base 1 and height 2 . Hence, its area is $\frac{1}{2} \cdot 1 \cdot 2 = 1$.

Solution. (Calculus 2) We are talking about the area between the graphs of the functions $f(x) = 2x$ and $g(x) = 0$ for $x \in [0, 1]$. This area is \int_0 $\int_0^1 |f(x) - g(x)| dx =$ 0 $\left[\frac{1}{2x}\right]$ $2x dx = \left[x^2\right]$ 0 $\frac{1}{1} = 1.$

Solution. (Calculus 3, vertical cross-sections) | 0 $\mathbf{1}$ 0 $\frac{2x}{\mathrm{d}y\mathrm{d}x} =$ 0 $\left\lfloor \int_0^1 2x \mathrm{d}x = \left\lfloor x^2 \right\rfloor$ 0 $\frac{1}{3} = 1$

Solution. (Calculus 3, horizontal cross-sections) \int_0 2 Z $y/2$ ¹ dxdy = \int 0 $\frac{2}{2}\left(1-\frac{y}{2}\right)$ 2 $\int dy = \int y - \frac{y^2}{4}$ 4 T 0 $2^{2} = 1$

Substitution in multiple integrals

In \int \int R $f(x,y)\mathrm{d}y\mathrm{d}x$, we want to make the change of variables $x = g(u,v)$, $y = h(u,v)$.

- \int R $f(x, y)$ dyd $x = \int$ $\int_G\,f(g(u,v),h(u,v))|J(u,v)|\mathrm{d} v\mathrm{d} u.$
- where G is the region in the uv -plane corresponding to R ,
- and $J(u, v) = det \begin{bmatrix} g_u & g_v \ h_u & h_w \end{bmatrix}$ h_u h_v $\biggl]= g_uh_v-g_vh_u$ is the Jacobian determinant.

Note that this is not suprising: when substituting a single variable $x\!=\!g(u)$ we need to substitute ${\rm d}x\!=\!g'(u){\rm d}u.$ The Jacobian determinant $J(u, v)$ (which, in a way, is the simplest combination of all involved partial derivatives) replaces the single derivative $g'(u)$.

Example 112. If $x = r \cos\theta$, $y = r \sin\theta$, then the Jacobian determinant is $J(r, \theta) = det$ Т \mathbf{I} ∂x ∂r ∂x ∂r ∂θ
∂y ∂y ∂r ∂y ∂θ $=\det \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}$ $\vert = r \cos^2 \theta + r \sin^2 \theta = r.$

Using **polar coordinates** $x = r \cos\theta$, $y = r \sin\theta$, we have

$$
\iint_R f(x, y) dy dx = \iint_G f(r \cos \theta, r \sin \theta) r dr d\theta
$$

Example 113. Determine \int R $\mathrm{d}y\mathrm{d}x$ with the region R described by $x^2\!+\!y^2\!\leqslant\!1$, $x\!\geqslant\!0$, $y\!\geqslant\!0.$ Solution. (just a circle!) Sketch the region! We are asked to find the area of a quarter of the unit circle. Obviously, the answer is going to be $\frac{\pi}{4}$.

Solution. (Cartesian coordinates, vertical cross-sections) \int_0 $\mathbf{1}$ 0 $\sqrt{1-x^2}$ $dydx =$ 0 $\sqrt{1-x^2}dx = ... = \frac{\pi}{4}$ $\frac{1}{4}$. However, the omitted steps do require some work (like a trigonometric substitution).

Solution. (polar coordinates) The region is described by $0 \leqslant \theta \leqslant \frac{\pi}{2}$ $\frac{\pi}{2}$ and $0 \leqslant r \leqslant r$.

Hence, in polar coordinates, $\sqrt{2}$ 0 $\pi/2$ 0 ¹ $rdrd\theta =$ 0 $\frac{\pi}{2}$ 1 $rac{1}{2}d\theta = \frac{\pi}{4}$ 4

Armin Straub straub@southalabama.edu