Triple integrals

The **volume** of a region D in 3D is given by
$$\int \int \int_D dV = \int \int \int_D dz dy dx$$
.

Example 118. Find the volume of the tetrahedron cut from the first octant by the plane x + 2y + z = 2.

First. Make a sketch of the tetrahedron! What are the intercepts? The triangle formed by these three points is one of the four sides of the tetrahedron.

Solution. (basic geometry) This is a simple enough object, that we can compute its volume directly: $vol = \frac{1}{3} \cdot height \cdot base = \frac{1}{3} \cdot \left(\frac{1}{2} \cdot 2 \cdot 1\right) \cdot 2 = \frac{2}{3}$ (here, we used as base the triangle in the *xy*-plane)

Solution. Let us set up an integral of the shape $\iint_D dz dy dx$.

· As a first step, realize that our object is completely described by the four inequalities

 $x+2y+z\leqslant 2,\quad x\geqslant 0,\quad y\geqslant 0,\quad z\geqslant 0.$

Make sure you see how each inequality corresponds to one face of the tetrahedron!

- The overall range for x is $0 \leq x \leq 2$.
- This is obvious from the sketch.
- On the other hand, just working from the inequalities, the only inequality of the form $x \leq ...$ is the first one: $x \leq 2 2y z$. We don't know what y and z are, so we need to choose them so that 2 2y z is as large as possible. Since $y \geq 0$ and $z \geq 0$, we get $x \leq 2 2 \cdot 0 0 = 2$.
- With x specified, we now think about the corresponding range for y.
 - Clearly, $y \ge 0$.
 - The only inequality of the form $y \leq ...$ is the first one: $y \leq 1 \frac{x}{2} \frac{z}{2}$. We don't know what z is, so we need to choose it so that $1 \frac{x}{2} \frac{z}{2}$ is as large as possible. Since $z \ge 0$, we get $y \leq 1 \frac{x}{2} \frac{0}{2} = 1 \frac{x}{2}$.
- Finally, with x and y specified, we think about the corresponding range for z.
 - Clearly, $z \ge 0$.
 - The only inequality of the form $z \leq ...$ is the first one: $z \leq 2 x 2y$.
 - Summarizing, we have described our tetrahedron by $0 \le x \le 2$, $0 \le y \le 1 \frac{x}{2}$, $0 \le z \le 2 x 2y$.
- The corresponding integral is

$$\int_{0}^{2} \int_{0}^{1-x/2} \int_{0}^{2-x-2y} dz dy dx = \int_{0}^{2} \int_{0}^{1-x/2} (2-x-2y) dy dx$$
$$= \int_{0}^{2} \left[2y - xy - y^{2} \right]_{y=0}^{y=1-x/2} dx$$
$$= \int_{0}^{2} \left(1 - x + \frac{x^{2}}{4} \right) dx = \frac{2}{3}$$

Important comment. There are a total of 3! = 6 orderings of x, y, z in which we could have approached the problem. As an exercise, produce an integral of the form $\int \int \int_D dy dz dx$ and check that its value is also $\frac{2}{3}$. The bounds you get in that case are: $0 \le y \le 1$, $0 \le x \le 2 - 2y$, $0 \le z \le 2 - x - 2y$.