Line integrals

Example 126. (review) Find a parametrization for the line segment from $(1, 2, 3)$ to $(1, 1, 1)$. Solution. For instance, $\boldsymbol{r}(t)\!=\!\widehat{\boldsymbol{\mathsf{F}}}$ T $x(t)$ $y(t)$ $z(t)$ $=$ \mathbf{I} 1 2 3 $\Big]+t\Big[$ Ί 0 −1 $^{\mathrm{-2}}$ with $t \in [0, 1]$.

Example 127. (review) Find a parametrization for the upper half of the circle $x^2 + y^2 = 4$. **Solution.** For instance, $\boldsymbol{r}(t) = \begin{bmatrix} 2\cos(t) \\ 2\sin(t) \end{bmatrix}$ $2\mathrm{sin}(t)$ $, t \in [0, \pi].$

Solution. Or, for instance, $\bm{r}(t) = \begin{bmatrix} t \ \frac{t}{\sqrt{t}} \end{bmatrix}$ $\sqrt{4-t^2}$ $, t \in [-2, 2].$

Suppose that the curve C is parametrized by $r(t) = x(t)i + y(t)j + z(t)k$, with parameter $t \in [a, b]$. The arc length of the curve is

length(C) =
$$
\int_C ds = \int_a^b ||\mathbf{r}'(t)||dt = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt.
$$

We have seen all this, except the <mark>line integral</mark> $\int_C\,$ d s . The idea is that $\mathrm{d} s\!=\!\sqrt{\mathrm{d} x^2+\mathrm{d} y^2+\mathrm{d} z^2}$ is the length of a tiny piece of the curve C and we are adding these over the entire curve C to get the length of C . For general line integrals $\int_{\,C} f(x,y,z) \mathrm{d} s$, we proceed in the same way, but instead of just adding up little lengths ds along the curve C we add up $f(x, y, z)$ ds along the curve C.

Line integrals (with respect to arc length):
$$
\int_C f(x, y, z) ds = \int_a^b f(x(t), y(t), z(t)) ||r'(t)|| dt
$$

Like in the case of arc length, the choice of parametrization for C does not matter.

Example 128. Evaluate $\mathcal{C}_{0}^{(n)}$ ds, \Box $\mathcal{C}_{0}^{(n)}$ $x\mathrm{d}s$ and \vert $\mathcal{C}_{0}^{(n)}$ $xy\mathrm{d}s$ where C is the straight-line segment from $(0, 1)$ to $(1, 0)$. **Solution.** We use $\boldsymbol{r}(t) = \begin{bmatrix} x(t) \\ x(t) \end{bmatrix}$ $y(t)$ $]=\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1 $]+t \begin{bmatrix} 1 \end{bmatrix}$ −1 $]=\left[\begin{array}{cc} t \\ t \end{array}\right]$ $1 - t$ |, $t \in [0, 1]$. Then, $||\mathbf{r}'(t)|| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$. \overline{a} $\int_C \, \mathrm{d}s = \int$ 0 $\frac{1}{\sqrt{2}}$ d $t = \sqrt{2}$ (the arc length of C), $\int_C x \mathrm{d}s = \int$ 0 $\frac{1}{t\sqrt{2}}dt = \sqrt{2}\left[\frac{t^2}{2}\right]$ 2 1 0 $\frac{1}{2} = \frac{\sqrt{2}}{2}$ 2 \overline{a} $\int_C xyds = \int$ 0 $t(1-t)\sqrt{2}dt = \sqrt{2}\left[\frac{t^2}{2}\right]$ $\frac{1}{2}$ t^3 3 T 0 $\frac{1}{2} = \frac{\sqrt{2}}{6}$ 6

Example 129. Evaluate $\int_C x ds$ where C is the graph of $y=1-x^2$ from $(0,1)$ to $(1,0)$. **Solution.** We use the parametrization $\bm{r}(t) = \left[\begin{array}{c} x \ y \end{array}\right]$ \overline{y} $]=\left[\begin{array}{cc} t \\ t \end{array}\right]$ $\begin{aligned} \left[\begin{array}{c} t \\ 1 - t^2 \end{array}\right], \ t \in [0, 1]. \ \ \text{Then, } \ \|r'(t)\| = \sqrt{1 + (-2t)^2}. \end{aligned}$ \overline{a} $\int_C xds = \int$ 0 $t\sqrt{1+4t^2}dt=\frac{1}{2}$ 8 \overline{a} 1 $\sqrt{u}\mathrm{d}u =$ $\lceil 1 \rceil$ 8 $\left[\frac{u^{3/2}}{3/2}\right]_1^5$ 1 $=\frac{5^{3/2}-1}{12}$ 12

Comment. Without any computations it is clear (why?!) that $\int_C x \mathrm{d}s > \int_L x \mathrm{d}s$ where L is the straight-line segment from $(0,1)$ to $(1,0)$ (as in the previous example). Indeed, $\frac{5^{3/2}-1}{12} \approx 0.848 > \frac{\sqrt{2}}{2}$ $\frac{2}{2} \approx 0.707$.

Armin Straub straub@southalabama.edu