Line integrals

Example 126. (review) Find a parametrization for the line segment from (1,2,3) to (1,1,1). Solution. For instance, $\mathbf{r}(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + t \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix}$ with $t \in [0,1]$.

Example 127. (review) Find a parametrization for the upper half of the circle $x^2 + y^2 = 4$. Solution. For instance, $r(t) = \begin{bmatrix} 2\cos(t) \\ 2\sin(t) \end{bmatrix}$, $t \in [0, \pi]$.

Solution. Or, for instance, $\boldsymbol{r}(t) = \begin{bmatrix} t \\ \sqrt{4-t^2} \end{bmatrix}$, $t \in [-2,2]$.

Suppose that the curve C is parametrized by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, with parameter $t \in [a, b]$. The **arc length** of the curve is

$$\operatorname{length}(C) = \int_C \, \mathrm{d}s = \int_a^b \, \|\boldsymbol{r}'(t)\| \, \mathrm{d}t = \int_a^b \, \sqrt{\left(\frac{\,\mathrm{d}x}{\,\mathrm{d}t}\right)^2 + \left(\frac{\,\mathrm{d}y}{\,\mathrm{d}t}\right)^2 + \left(\frac{\,\mathrm{d}z}{\,\mathrm{d}t}\right)^2} \, \mathrm{d}t$$

We have seen all this, except the line integral $\int_C ds$. The idea is that $ds = \sqrt{dx^2 + dy^2 + dz^2}$ is the length of a tiny piece of the curve C and we are adding these over the entire curve C to get the length of C. For general line integrals $\int_C f(x, y, z) ds$, we proceed in the same way, but instead of just adding up little lengths ds along the curve C we add up f(x, y, z)ds along the curve C.

Line integrals (with respect to arc length):
$$\int_C f(x, y, z) ds = \int_a^b f(x(t), y(t), z(t)) \| \boldsymbol{r}'(t) \| dt$$

Like in the case of arc length, the choice of parametrization for C does not matter.

Example 128. Evaluate $\int_C ds$, $\int_C x ds$ and $\int_C xy ds$ where C is the straight-line segment from (0,1) to (1,0). **Solution.** We use $\mathbf{r}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} t \\ 1-t \end{bmatrix}$, $t \in [0,1]$. Then, $\|\mathbf{r}'(t)\| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$. $\int_C ds = \int_0^1 \sqrt{2} dt = \sqrt{2}$ (the arc length of C), $\int_C x ds = \int_0^1 t \sqrt{2} dt = \sqrt{2} \begin{bmatrix} t^2 \\ 2 \end{bmatrix}_0^1 = \frac{\sqrt{2}}{2}$ $\int_C xy ds = \int_0^1 t(1-t)\sqrt{2} dt = \sqrt{2} \begin{bmatrix} t^2 \\ 2 \end{bmatrix} - \frac{t^3}{3} \end{bmatrix}_0^1 = \frac{\sqrt{2}}{6}$

Example 129. Evaluate $\int_C x ds$ where C is the graph of $y = 1 - x^2$ from (0, 1) to (1, 0). Solution. We use the parametrization $\mathbf{r}(t) = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t \\ 1 - t^2 \end{bmatrix}$, $t \in [0, 1]$. Then, $\|\mathbf{r}'(t)\| = \sqrt{1 + (-2t)^2}$. $\int_C x ds = \int_0^1 t \sqrt{1 + 4t^2} dt = \frac{1}{8} \int_1^5 \sqrt{u} du = \left[\frac{1}{8} \frac{u^{3/2}}{3/2}\right]_1^5 = \frac{5^{3/2} - 1}{12}$

Comment. Without any computations it is clear (why?!) that $\int_C x ds > \int_L x ds$ where L is the straight-line segment from (0,1) to (1,0) (as in the previous example). Indeed, $\frac{5^{3/2}-1}{12} \approx 0.848 > \frac{\sqrt{2}}{2} \approx 0.707$.

Armin Straub straub@southalabama.edu