Example 146. (physical work)

- W = Fd (work done moving an object a distance d; constant force of magnitude F in direction of motion)
- $W = \int_{a}^{b} F(x) dx$ (work done moving an object from *a* to *b*; variable force *F* in direction of motion)
- W = F · D (work done moving an object along D; constant force F)
 Why? The effective force is the projection of F onto D. Its magnitude is ||F||cos(θ), where θ is the angle between F and D (make a sketch!). Hence, W = ||F||cos(θ)||D|| = F · D. (Also, see Section 11.3.)
- $W = \int_C \mathbf{F} \cdot d\mathbf{r}$ (work done moving an object along the curve *C*; variable force \mathbf{F})

Why? Recall that $d\mathbf{r} = \mathbf{r}' dt$ is a small displacement along the curve C. Therefore, $\mathbf{F} \cdot d\mathbf{r}$ is the work needed for that small displacement. It remains to add all these up.

Example 147. Find the work done by F moving an object from (3,0) to (0,3) along the circle C of radius 3 (counterclockwise) if (a) $F = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, (b) $F = \begin{bmatrix} -y \\ x \end{bmatrix}$.

Solution. In both cases, the work is $W = \int_{C} \boldsymbol{F} \cdot d\boldsymbol{r}$.

(a) Computing the line integral directly: $W = \int_C \begin{bmatrix} 0\\1 \end{bmatrix} \cdot d\mathbf{r} = \int_0^{\pi/2} \begin{bmatrix} 0\\1 \end{bmatrix} \cdot \begin{bmatrix} -3\sin t\\3\cos t \end{bmatrix} dt = \int_0^{\pi/2} 3\cos t dt = 3.$ However, it is easier to notice that \mathbf{F} is conservative (indeed, $M_y = N_x$) with potential f(x, y) = y.

Therefore, by the Fundamental Theorem, $W = \int_C \begin{bmatrix} 0\\1 \end{bmatrix} \cdot d\mathbf{r} = \begin{bmatrix} y \end{bmatrix}_{(3,0)}^{(0,3)} = 3.$

Comment. (Ignoring signs) we can think of F as a gravitational field. As you probably know from physics, gravity is a **conservative force**; meaning, the work done in moving a particle between two points is independent of the path taken. Indeed, this work can be obtained as the change in **potential energy**, which is exactly what we compute when using the Fundamental Theorem.

(**b**) $W = \int_C \begin{bmatrix} -y \\ x \end{bmatrix} \cdot d\mathbf{r} = \int_0^{\pi/2} \begin{bmatrix} -3\sin t \\ 3\cos t \end{bmatrix} \cdot \begin{bmatrix} -3\sin t \\ 3\cos t \end{bmatrix} dt = \int_0^{\pi/2} 9dt = \frac{9\pi}{2}$

Note that F is not conservative $(M_y \neq N_x)$. Hence, we cannot use the Fundamental Theorem. **Comment.** In this very simple example, we can actually see that answer directly: observe that the force F has constant magnitude 3 on C (why?) and it always is in the direction of motion (sketch the vector field F!). Since, the total distance is $\frac{1}{4}(2\pi \cdot 3) = \frac{3\pi}{2}$, the total work is $W = Fd = 3 \cdot \frac{3\pi}{2} = \frac{9\pi}{2}$.

Review. $F = \begin{bmatrix} M \\ N \end{bmatrix}$ is conservative on a simply connected region D if and only if $M_y = N_x$.

Theorem 148. (Green's Theorem) Let R be a 2D region enclosed by a simple loop C, oriented counterclockwise. F = Mi + Nj.

$$\int_C \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{r} = \iint_R (N_x - M_y) \mathrm{d}x \mathrm{d}y$$

Fine print: C piecewise smooth; M, N need to have continuous partial derivatives in an open region containing R.

What happens if F is conservative?

- Then, $\int_C \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{r} = 0$ by the Fundamental Theorem of Line Integrals.
- Also, $\int \int_{R} (N_x M_y) dx dy = 0$ because $N_x M_y = 0$.

Armin Straub straub@southalabama.edu