Sketch of Lecture 48

• \oint_C means the same as \int_C but emphasizes that C is a simple loop (positively oriented).

Simple means that the curve C does not cross itself.

Example 149. Evaluate $\oint_C \begin{bmatrix} -y \\ x \end{bmatrix} \cdot d\mathbf{r} = \oint_C -y dx + x dy$ where *C* is the unit circle, oriented positively (that is, counterclockwise).

Solution. (directly) $W = \oint_C \begin{bmatrix} -y \\ x \end{bmatrix} \cdot d\mathbf{r} = \int_0^{2\pi} \begin{bmatrix} -\sin t \\ \cos t \end{bmatrix} \cdot \begin{bmatrix} -\sin t \\ \cos t \end{bmatrix} dt = \int_0^{2\pi} 1 dt = 2\pi$

Solution. (Green) $W = \oint_C \begin{bmatrix} -y \\ x \end{bmatrix} \cdot d\mathbf{r} = \iint_R (N_x - M_y) dx dy = \iint_R 2 dx dy = 2 \operatorname{area}(R) = 2\pi$

Example 150. (planimeter) If we choose F such that $N_x - M_y = 1$, then Green's Theorem becomes $\oint_C F \cdot dr = \iint_R (N_x - M_y) dx dy = \operatorname{area}(R)$.

One such choice is $\mathbf{F} = \frac{1}{2} \begin{bmatrix} -y \\ x \end{bmatrix}$ as in the previous example. Another simple choice is $\mathbf{F} = \begin{bmatrix} 0 \\ x \end{bmatrix}$. These choices lead to the interesting formulas $\operatorname{area}(R) = \oint_C x dy$ and $\operatorname{area}(R) = \frac{1}{2} \oint_C (-y dx + x dy)$.

A **planimeter** is a measuring instrument used to determine the area of an arbitrary two-dimensional shape; it works based on the principle we just observed!

Example 151. Evaluate $\oint_C xy dx + x^2y dy$ where *C* is the positively oriented boundary of the triangle *T* with vertices (0,0), (1,0), (1,2).

Solution. (directly, HW!) We parametrize the three sides as $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t \\ 0 \end{bmatrix}$, from t = 0 to t = 1, as well as $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ t \end{bmatrix}$, from t = 0 to t = 2, and $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + t \begin{bmatrix} -1 \\ -2 \end{bmatrix}$, from t = 0 to t = 1 (we need to be careful about the orientation here!). Then, $\oint_C xy \, dx + x^2y \, dy = \int_0^1 0 \cdot 1 \, dt + 0 \cdot 0 \, dt + \int_0^2 t \cdot 0 \, dt + t \cdot 1 \, dt + \int_0^1 (1 - t)(2 - t) \cdot (-1) \, dt + (1 - t)^2(2 - t) \cdot (-2) \, dt = 0 + 2 - \frac{5}{3} = \frac{1}{3}$.

Solution. (Green) Note that the triangle can be described by the bounds $0 \le x \le 1$, $0 \le y \le 2x$. $\oint_C xy \, dx + x^2 y \, dy = \iint_T (2xy - x) \, dy \, dx = \int_0^1 \int_0^{2x} (2xy - x) \, dy \, dx$ $= \int_0^1 \left[xy^2 - xy \right]_{y=0}^{y=2x} \, dx = \int_0^1 (4x^3 - 2x^2) \, dx = \left[x^4 - \frac{2}{3}x^3 \right]_0^1 = \frac{1}{3}$

• Line integrals are also written as $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot \mathbf{T} ds$, where \mathbf{T} is a unit vector tangent to the curve C (at each point).

Why? Note that $d\mathbf{r} = \begin{bmatrix} dx \\ dy \end{bmatrix}$ is a tangent vector (recall that $d\mathbf{r} = \mathbf{r}'(t)dt$ and that the velocity vector $\mathbf{r}'(t)$ is tangent to the curve C) of length $\sqrt{dx^2 + dy^2} = ds$. Hence, $d\mathbf{r} = \mathbf{T}ds$.

Armin Straub straub@southalabama.edu