Sketch of Lecture 48 Thu, 4/21/2016

• \oint means the same as \int but emphasizes that C is a simple loop (positively oriented). \mathcal{C}_{0}^{0} \bm{C}

Simple means that the curve C does not cross itself.

Example 149. Evaluate q \boldsymbol{C} $\left[\begin{array}{c}-y\end{array}\right]$ \overline{x} \cdot dr = 9 $\frac{b}{C}-y\mathrm{d} x+x\mathrm{d} y$ where C is the unit circle, oriented C positively (that is, counterclockwise).

Solution. (directly) $W = \hat{q}$ \boldsymbol{C} $\left[\begin{array}{c}-y\end{array}\right]$ x \cdot dr = | 0 2π $\int -\sin t$ $\cos t$ 1 · $\int -\sin t$ $\cos t$ $\Big] dt = \Big|$ 0 2π
 $1dt = 2\pi$

Solution. (Green) $W = \hat{q}$ C $\left[\begin{array}{c} -y \\ -y \end{array}\right]$ \boldsymbol{x} $\bigg] \cdot dr = \int \int$ $\int_R (N_x - M_y) \mathrm{d}x \mathrm{d}y = \int \int$ $\begin{aligned} 2 \text{d}x \text{d}y = 2 \text{area}(R) = 2\pi \\ R \end{aligned}$

Example 150. (planimeter) If we choose F such that $N_x - M_y = 1$, then Green's Theorem becomes \overline{q} $\int\limits_{C}\bm{F}\cdot\mathrm{d}\bm{r} = \int\int$ $\int_R (N_x - M_y) dxdy = \text{area}(R).$

One such choice is $\bm{F}\!=\!\frac{1}{2}$ 2 $\begin{bmatrix} -y \\ x \end{bmatrix}$ $\overline{}$ as in the previous example. Another simple choice is $\overline{\bm{F}}$ $=$ $\overline{}$ x . These choices lead to the interesting formulas $\text{area}(R) = \oint_C x \text{d}y$ and $\text{area}(R) = \frac{1}{2}$ I \int_C $(-ydx + xdy)$.

A planimeter is a measuring instrument used to determine the area of an arbitrary two-dimensional shape; it works based on the principle we just observed!

Example 151. Evaluate q \boldsymbol{C} $xy\mathrm{d}x\!+\!x^2y\mathrm{d}y$ where C is the positively oriented boundary of the triangle T with vertices $(0,0)$, $(1,0)$, $(1,2)$.

Solution. (directly, HW!) We parametrize the three sides as $\left[\begin{smallmatrix} x \ y \end{smallmatrix} \right]$ \overline{y} $=\left[\begin{array}{c}t\\0\end{array}\right]$ 0 , from $t=0$ to $t=1$, as well as $\lceil x \rceil$ \dot{y} $=$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ t , from $t = 0$ to $t = 2$, and $\begin{bmatrix} x \\ y \end{bmatrix}$ \overline{y} $=$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 $+ t \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ $^{\mathrm{-2}}$, from $t = 0$ to $t = 1$ (we need to be careful about the orientation here!). Then, $\oint_C xy dx + x^2 y dy$ $=$ \overline{a} 0 $1 \n0.1 dt + 0.0 dt +$ 0 $\frac{1}{2} \frac{1}{t \cdot 0 dt + t \cdot 1 dt + \frac{1}{t}}$ 0 $\frac{1}{1}(1-t)(2-t)\cdot(-1)dt+(1-t)^2(2-t)\cdot(-2)dt=0+2-\frac{5}{3}$ $\frac{5}{3} = \frac{1}{3}$ $\frac{1}{3}$.

Solution. (Green) Note that the triangle can be described by the bounds $0 \le x \le 1$, $0 \le y \le 2x$. I $\int_C xy\mathrm{d}x + x^2y\mathrm{d}y = \int\int$ $\int_T (2xy-x) dy dx = \int$ 0 $\mathbf{1}$ 0 $\int_{2x}^{2x} (2xy - x) dy dx$ $=$ $\overline{ }$ 0 $\left[xy^2 - xy\right]_{y=0}^{y=2}$ $y=2x$
d $x=$ 0 $\int_{0}^{1} (4x^3 - 2x^2) dx = \left[x^4 - \frac{2}{3} \right]$ $\frac{2}{3}x^3$ 0 $\frac{1}{2} = \frac{1}{2}$ 3

 \bullet $\;$ Line integrals are also written as $\int_{C} \bm{F} \cdot \mathrm{d} \bm{r}$ $\;$ $\;$ $\;$ $\frac{\Gamma}{C} \boldsymbol{F} \cdot \boldsymbol{T} \text{d}s$, where \boldsymbol{T} is a unit vector tangent to the curve C (at each point).

Why? Note that $\mathrm{d}\bm{r} = \left[\begin{array}{c} \mathrm{d}x \ \mathrm{d}y\end{array}\right]$ $_{\rm dy}$ $\big]$ is a tangent vector (recall that ${\rm d} \bm{r} = \bm{r}'(t) {\rm d} t$ and that the velocity vector $\bm{r}'(t)$ is tangent to the curve C) of length $\sqrt{{\mathrm{d}} x^2 + {\mathrm{d}} y^2} \!=\! {\mathrm{d}} s.$ Hence, ${\mathrm{d}} \bm{r} \!=\! \bm{T} {\mathrm{d}} s.$

Armin Straub straub@southalabama.edu