Preparing for Midterm #1

Please print your name:

Problem 1. Consider the points P = (1, 2, -1), Q = (2, 3, 3) and R = (-1, 1, 2).

- (a) Determine the vectors \overrightarrow{PQ} and \overrightarrow{QR} .
- (b) Find the distance between P and Q.
- (c) Find a parametrization for the line through P and Q.
- (d) Find a parametrization for the line segment from Q to R.
- (e) Find an equation for the plane through P, Q and R.
- (f) Find the distance between P and the line through Q and R.
- (g) Find an equation for the sphere with center P and radius 5.
- (h) Find the area of the triangle with vertices P, Q and R.

Solution.

- (a) $\overrightarrow{PQ} = \begin{bmatrix} 2\\3\\3 \end{bmatrix} \begin{bmatrix} 1\\2\\-1 \end{bmatrix} = \begin{bmatrix} 1\\1\\4 \end{bmatrix}, \ \overrightarrow{QR} = \begin{bmatrix} -3\\-2\\-1 \end{bmatrix}$
- (b) $\left\| \overrightarrow{PQ} \right\| = \left\| \begin{bmatrix} 1\\1\\4 \end{bmatrix} \right\| = \sqrt{1+1+16} = \sqrt{18}$
- (c) $\begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix} + t \begin{bmatrix} 1\\ 1\\ 4 \end{bmatrix} = \begin{bmatrix} 1+t\\ 2+t\\ -1+4t \end{bmatrix}$ with $t \in (-\infty, \infty)$
- (d) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix} + t \begin{bmatrix} -3 \\ -2 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 3t \\ 3 2t \\ 3 t \end{bmatrix}$ with $t \in [0, 1]$
- (e) $\overrightarrow{PQ} = \begin{bmatrix} 1\\1\\4 \end{bmatrix}, \ \overrightarrow{QR} = \begin{bmatrix} -3\\-2\\-1 \end{bmatrix}$ are parallel to the plane.

Hence, we find a normal vector for the plane as $\boldsymbol{n} = \overrightarrow{PQ} \times \overrightarrow{QR} = \begin{bmatrix} 1\\1\\4 \end{bmatrix} \times \begin{bmatrix} -3\\-2\\-1 \end{bmatrix} = \begin{bmatrix} -1-(-8)\\-12-(-1)\\-2-(-3) \end{bmatrix} = \begin{bmatrix} 7\\-11\\1 \end{bmatrix}$.

At this point, we know that the plane can be described by an equation of the form 7x - 11y + z = d, and it remains to find the value d.

Since the point P = (1, 2, -1) is on the plane, we have $7 \cdot 1 - 11 \cdot 2 + (-1) = d$, that is, d = -16.

In conclusion, our plane is described by the equation 7x - 11y + z = -16.

Suggestion: If you have time left, verify this equation by plugging in all three points P, Q, R. If they all satisfy this equation, then your equation is guaranteed to be correct!

Comment: Here is a slightly longer derivation, which explains why we get an equation of the above shape. Our plane is known to contain the point P = (1, 2, -1). On the other hand, another point S = (x, y, z) is on the plane if and only if $\overrightarrow{PS} \cdot \boldsymbol{n} = 0$. (Why?)

Spelling out this last equation, we get $\begin{bmatrix} x - 1 \\ y - 2 \\ z + 1 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ -11 \\ 1 \end{bmatrix} = 0$, or 7(x - 1) - 11(y - 2) + (z + 1) = 0, which simplifies to 7x - 11y + z = -16. (And note how we actually ended up doing the same computation!)

(f) Recall that the distance between a point A and the line through B with direction \boldsymbol{v} is $d = \frac{\|\overrightarrow{BA} \times \boldsymbol{v}\|}{\|\boldsymbol{v}\|}$. For the distance between P and the line through Q and R, we therefore get

$$d = \frac{\left\| \overrightarrow{QP} \times \overrightarrow{QR} \right\|}{\left\| \overrightarrow{QR} \right\|} = \frac{\left\| \begin{bmatrix} -1\\ -1\\ -4 \end{bmatrix} \times \begin{bmatrix} -3\\ -2\\ -1 \end{bmatrix} \right\|}{\left\| \begin{bmatrix} -3\\ -2\\ -1 \end{bmatrix} \right\|} = \frac{\left\| \begin{bmatrix} 1-8\\ 12-1\\ 2-3 \end{bmatrix} \right\|}{\sqrt{9+4+1}} = \frac{\left\| \begin{bmatrix} -7\\ 11\\ -1 \end{bmatrix} \right\|}{\sqrt{14}} = \frac{\sqrt{49+121+1}}{\sqrt{14}} = \sqrt{\frac{171}{14}}$$

Suggestion: If you have time to review your answers, check each cross product by verifying that the result is orthogonal to both of the original vectors. For instance, here $\begin{bmatrix} -7\\11\\-1 \end{bmatrix} \cdot \begin{bmatrix} -1\\-1\\-4 \end{bmatrix} = 0$ and $\begin{bmatrix} -7\\11\\-1 \end{bmatrix} \cdot \begin{bmatrix} -3\\-2\\-1 \end{bmatrix} = 0$.

(g) $(x-1)^2 + (y-2)^2 + (z+1)^2 = 5^2$

Extra detail: A point A = (x, y, z) is on that sphere if and only if $\left\| \overrightarrow{PA} \right\| = 5$. The equation above is the expanded version of $\left\| \overrightarrow{PA} \right\|^2 = 5^2$.

(h) Let $\boldsymbol{v} = \overrightarrow{PQ} = \begin{bmatrix} 1\\1\\4 \end{bmatrix}$ and $\boldsymbol{w} = \overrightarrow{PR} = \begin{bmatrix} -2\\-1\\3 \end{bmatrix}$ be two sides of our triangle (you can pick other sides, no problem!).

Then, borrowing from what we learned in class, the area of the triangle is

$$\frac{1}{2} \| \boldsymbol{v} \times \boldsymbol{w} \| = \frac{1}{2} \left\| \begin{bmatrix} 1\\1\\4 \end{bmatrix} \times \begin{bmatrix} -2\\-1\\3 \end{bmatrix} \right\| = \frac{1}{2} \left\| \begin{bmatrix} 3-(-4)\\-8-3\\-1-(-2) \end{bmatrix} \right\| = \frac{1}{2} \left\| \begin{bmatrix} 7\\-11\\1 \end{bmatrix} \right\| = \frac{1}{2} \sqrt{49 + 121 + 1} = \frac{\sqrt{171}}{2}.$$

Problem 2. Consider the vectors $\boldsymbol{v}_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, $\boldsymbol{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ and $\boldsymbol{v}_3 = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$.

- (a) Determine $|\boldsymbol{v}_1|$.
- (b) Determine $\boldsymbol{v}_1 \cdot \boldsymbol{v}_2$.
- (c) Determine $\boldsymbol{v}_1 \times \boldsymbol{v}_2$.
- (d) What is the angle between v_1 and v_2 ? (Between v_2 and v_3 ?)
- (e) Determine the projection of v_1 onto v_2 . (The projection of v_2 onto v_3 . Explain your answer!)
- (f) Find a vector which has length 3 and is parallel to v_1 .
- (g) Are there two of the three vectors which are parallel? Perpendicular?

- (h) Find a parametrization for the line through (1, -1, 2) which is parallel to v_1 .
- (i) Find an equation for the plane through (1, 2, 3) which is perpendicular to v_1 .
- (j) Find an equation for the plane through (1, 2, 3) which is parallel to both v_1 and v_2 .

Solution.

- (a) $\|\boldsymbol{v}_1\| = \left\| \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix} \right\| = \sqrt{1+4+1} = \sqrt{6}$
- (b) $\boldsymbol{v}_1 \cdot \boldsymbol{v}_2 = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix} \cdot \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix} = 0 + 2 1 = 1$
- (c) $\boldsymbol{v}_1 \times \boldsymbol{v}_2 = \begin{bmatrix} 1\\2\\-1 \end{bmatrix} \times \begin{bmatrix} 0\\1\\1 \end{bmatrix} = \begin{bmatrix} 2-(-1)\\0-1\\1-0 \end{bmatrix} = \begin{bmatrix} 3\\-1\\1 \end{bmatrix}$
- (d) For the angle α between \boldsymbol{v}_1 and \boldsymbol{v}_2 , we have $\cos\alpha = \frac{\boldsymbol{v}_1 \cdot \boldsymbol{v}_2}{\|\boldsymbol{v}_1\| \|\boldsymbol{v}_2\|} = \frac{1}{\sqrt{6}\sqrt{2}} = \frac{1}{\sqrt{12}}$ and hence $\alpha = \arccos\left(\frac{1}{\sqrt{12}}\right) \approx 1.278$ (which is about 73.22°).

For the angle β between \boldsymbol{v}_2 and \boldsymbol{v}_3 , we have $\cos\beta = \frac{\boldsymbol{v}_2 \cdot \boldsymbol{v}_3}{\|\boldsymbol{v}_2\| \|\boldsymbol{v}_3\|} = 0$ and hence $\beta = \frac{\pi}{2}$ (that is, 90°). In other words, \boldsymbol{v}_2 and \boldsymbol{v}_3 are perpendicular.

(e) The projection of \boldsymbol{v}_1 onto \boldsymbol{v}_2 is $\operatorname{proj}_{\boldsymbol{v}_2} \boldsymbol{v}_1 = \frac{\boldsymbol{v}_1 \cdot \boldsymbol{v}_2}{\|\boldsymbol{v}_2\|^2} \boldsymbol{v}_2 = \frac{1}{2} \begin{bmatrix} 0\\1\\1 \end{bmatrix}$.

The projection of \boldsymbol{v}_2 onto \boldsymbol{v}_3 is $\operatorname{proj}_{\boldsymbol{v}_3} \boldsymbol{v}_2 = \frac{\boldsymbol{v}_2 \cdot \boldsymbol{v}_3}{\|\boldsymbol{v}_3\|^2} \boldsymbol{v}_3 = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$. This is because \boldsymbol{v}_2 is perpendicular to \boldsymbol{v}_3 .

- (f) The vector $3 \frac{\boldsymbol{v}_1}{\|\boldsymbol{v}_1\|} = \frac{3}{\sqrt{6}} \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$ has length 3 and is parallel to \boldsymbol{v}_1 .
- (g) Two vectors **a**, **b** are parallel if and only if one of the vectors is a multiple of the other. The three vectors are clearly not multiples of each other.

Comment: You might also recall from class that two vectors a, b are parallel if and only if $a \times b = 0$. So you could also compute these cross products. That takes more time though.

Two vectors $\boldsymbol{a}, \boldsymbol{b}$ are perpendicular if and only if $\boldsymbol{a} \cdot \boldsymbol{b} = 0$. We have $\boldsymbol{v}_1 \cdot \boldsymbol{v}_2 = 1$, $\boldsymbol{v}_1 \cdot \boldsymbol{v}_3 = 6$ and $\boldsymbol{v}_2 \cdot \boldsymbol{v}_3 = 0$. Hence, \boldsymbol{v}_2 and \boldsymbol{v}_3 are perpendicular.

- (h) $\begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix} + t \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix} = \begin{bmatrix} 1+t\\ -1+2t\\ 2-t \end{bmatrix}$ with $t \in (-\infty, \infty)$
- (i) We know that the plane has normal vector $\boldsymbol{n} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, and so can be described by an equation of the form x + 2y z = d. To find the value d, we use the fact that the point P = (1, 2, 3) is on the plane: $1 + 2 \cdot 2 3 = d$, and so, d = 2. Our plane is described by x + 2y z = 2.
- (j) The plane is parallel to both v_1 and v_2 if and only if it is perpendicular to $v_1 \times v_2 = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$.

Hence, the plane can be described by an equation of the form 3x - y + z = d. To find the value d, we use the fact that the point P = (1, 2, 3) is on the plane: $3 \cdot 1 - 2 + 3 = d$, and so, d = 4. Our plane is described by 3x - y + z = 4.

Problem 3. Consider the plane described by 3x - y - 2z = 4.

- (a) Determine a normal vector for the plane.
- (b) Find the *x*-intercept, the *y*-intercept and the *z*-intercept of the plane.
- (c) Find a unit vector perpendicular to our plane.
- (d) Find an equation for the plane through (1, 2, 3) which is parallel to our plane.
- (e) Is the line with parametrization $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1+t \\ 2+t \\ 3+t \end{bmatrix}$ parallel to our plane?
- (f) If possible, find the intersection of the line with parametrization $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1-2t \\ 3+t \\ 1 \end{bmatrix}$ and our plane.
- (g) Determine the distance between the point (1, 2, 3) and our plane.
- (h) Find (a parametrization for) the line in which our plane intersects with the plane x + y + z = 2.

Solution.

- (a) $\boldsymbol{n} = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$ is a normal vector (as is any multiple of it).
- (b) The intersection with x-axis, y-axis and z-axis are $(\frac{4}{3}, 0, 0)$, (0, -4, 0) and (0, 0, -2), respectively. The x-intercept is $\frac{4}{3}$, the y-intercept is -4 and the z-intercept is -2.
- (c) There is two unit vectors perpendicular to our plane: $\frac{n}{\|n\|} = \frac{1}{\sqrt{14}} \begin{bmatrix} 3\\ -1\\ 2 \end{bmatrix}$ and $-\frac{n}{\|n\|} = \frac{-1}{\sqrt{14}} \begin{bmatrix} 3\\ -1\\ 2 \end{bmatrix}$.
- (d) Observe that planes are parallel if and only if they share the same normal direction. Hence, any plane parallel to 3x y 2z = 4 can be described by an equation of the form 3x y 2z = d. To find the value d, we use the fact that the point P = (1, 2, 3) is on the plane: $3 \cdot 1 2 2 \cdot 3 = d$, and so, d = -5. Thus, our plane is described by 3x y 2z = -5.
- (e) A line with direction \boldsymbol{v} is parallel to a plane with normal vector \boldsymbol{n} if and only if $\boldsymbol{v} \cdot \boldsymbol{n} = 0$. Since $\begin{bmatrix} 1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 3\\-1\\-2 \end{bmatrix} = 0$, the given line is indeed parallel to our plane.
- (f) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1-2t \\ 3+t \\ 1 \end{bmatrix}$ is a point on the plane if and only if $3(1-2t) (3+t) 2 \cdot 1 = 4$. Simplified, this is -2 7t = 4, which we solve for $t = -\frac{6}{7}$. Hence, the line and plane intersect in the point $\begin{bmatrix} 1-2t \\ 3+t \\ 1 \end{bmatrix}_{t=-\frac{6}{7}} = \frac{1}{7} \begin{bmatrix} 19 \\ 15 \\ 7 \end{bmatrix}$. Suggestion: Check that $\frac{1}{7} \begin{bmatrix} 19 \\ 15 \\ 7 \end{bmatrix}$ is indeed on the plane by plugging in.
- (g) Recall that the distance between a point A and the plane through B with normal \boldsymbol{n} is $d = \frac{\left|\overline{BA} \cdot \boldsymbol{n}\right|}{\|\boldsymbol{n}\|}$.

For the distance between A = (1, 2, 3) and our plane, for which we can choose $B = \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}$ and $n = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$, we get

$$d = \frac{\left|\overrightarrow{BA} \cdot \boldsymbol{n}\right|}{\left\|\boldsymbol{n}\right\|} = \frac{\left\| \begin{bmatrix} 1\\2\\5 \end{bmatrix} \cdot \begin{bmatrix} 3\\-1\\-2 \end{bmatrix} \right\|}{\left\| \begin{bmatrix} 3\\-1\\-2 \end{bmatrix} \right\|} = \frac{\left|3-2-10\right|}{\sqrt{9+1+4}} = \frac{9}{\sqrt{14}}.$$

(h) To find the intersection of 3x - y - 2z = 4 and x + y + z = 2, we can subtract $3eq_2$ from eq_1 (to eliminate x). $eq_1 - 3eq_2$ is -4y - 5z = -2. Since we cannot eliminate further, we now choose to set z = t, our parameter.

From -4y - 5t = -2, we then find $y = \frac{1}{2} - \frac{5}{4}t$.

Substituting into the first equation, we get $3x - (\frac{1}{2} - \frac{5}{4}t) - 2t = 4$, which we solve for $x = \frac{3}{2} + \frac{1}{4}t$.

Taken together, we have $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{3}{2} + \frac{1}{4}t \\ \frac{1}{2} - \frac{5}{4}t \\ t \end{bmatrix}$, which is a parametrization for the line of intersection.

Suggestion: To verify our result, we can check that the direction $\boldsymbol{v} = \begin{bmatrix} \frac{1}{4} \\ -\frac{5}{4} \\ 1 \end{bmatrix}$ is perpendicular to both of the normal vectors. Indeed, $\begin{bmatrix} \frac{1}{4} \\ -\frac{5}{4} \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix} = 0$ and $\begin{bmatrix} \frac{1}{4} \\ -\frac{5}{4} \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 0.$

Alternative solution: In the spirit of the above "suggestion", we can find the direction of the line of intersection by computing $\boldsymbol{v} = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 - (-2) \\ -2 - 3 \\ 3 - (-1) \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \\ 4 \end{bmatrix}$. This just 4 times the direction vector we found above.

To write down a parametrization, we still need to find a point on the line. (You can do this by making an arbitrary choice for one of x, y or z, and then solving the two equations 3x - y - 2z = 4 and x + y + z = 2 for the two remaining unknowns.)

Problem 4. Consider the line L_1 parametrized by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2-t \\ 1+3t \\ t \end{bmatrix}$.

- (a) Find a parametrization for the line parallel to L_1 through the point (1, 2, 3).
- (b) What is the distance between the point (1, 2, 3) and the line L_1 ?
- (c) Let L_2 be a second line, parametrized by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1+2t \\ -6t \\ 1-2t \end{bmatrix}$. Are L_1 and L_2 parallel? Are they the same line?
- (d) Let L_3 be a third line, parametrized by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1+t \\ 2-2t \\ 5-t \end{bmatrix}$. Do L_1 and L_3 intersect? If yes, find their intersection.
- (e) Let L_4 be a fourth line, parametrized by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1+t \\ 8-2t \\ 3-t \end{bmatrix}$. Do L_1 and L_4 intersect? If yes, find their intersection.

Solution.

- (a) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + t \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1-t \\ 2+3t \\ 3+t \end{bmatrix}$ with $t \in (-\infty, \infty)$
- (b) Recall that the distance between a point A and the line through B with direction \boldsymbol{v} is $d = \frac{\|\overrightarrow{BA} \times \boldsymbol{v}\|}{\|\boldsymbol{v}\|}$.

For the distance between A = (1, 2, 3) and our line through B = (2, 1, 0) and direction $\boldsymbol{v} = \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix}$, we therefore get

$$d = \frac{\left\| \overrightarrow{BA} \times \boldsymbol{v} \right\|}{\|\boldsymbol{v}\|} = \frac{\left\| \begin{bmatrix} -1\\1\\3\\1 \end{bmatrix} \times \begin{bmatrix} -1\\3\\1\\1 \end{bmatrix} \right\|}{\left\| \begin{bmatrix} -1\\3\\1 \end{bmatrix} \right\|} = \frac{\left\| \begin{bmatrix} 1-9\\-3-(-1)\\-3-(-1) \end{bmatrix} \right\|}{\sqrt{1+9+1}} = \frac{\left\| \begin{bmatrix} -8\\-2\\-2 \end{bmatrix} \right\|}{\sqrt{11}} = \frac{\sqrt{64+4+4}}{\sqrt{11}} = \sqrt{\frac{72}{11}}.$$

Armin Straub straub@southalabama.edu (c) We need to check whether the direction vectors $\boldsymbol{v}_2 = \begin{bmatrix} 2 \\ -6 \\ -2 \end{bmatrix}$ and $\boldsymbol{v}_1 = \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix}$ are parallel. They clearly are because $\boldsymbol{v}_2 = -2\boldsymbol{v}_1$. Hence, the lines are parallel.

Are the lines the same? Since we already know that the lines are parallel, this is the case if and only if they have a point in common. L_1 obviously contains the point $\begin{bmatrix} 2\\1\\0 \end{bmatrix}$ and so we check whether that point is also on L_2 : however, there is no t such that $\begin{bmatrix} 1+2t\\-6t\\1-2t \end{bmatrix} = \begin{bmatrix} 2\\1\\0 \end{bmatrix}$. (Why?) This means that the lines are not the same.

(d) To determine whether the two lines intersect, we ask whether there are values t_1 and t_2 such that

$$\left[\begin{array}{c}2-t_1\\1+3t_1\\t_1\end{array}\right] = \left[\begin{array}{c}1+t_2\\2-2t_2\\5-t_2\end{array}\right].$$

We can use the first two equations $2 - t_1 = 1 + t_2$ and $1 + 3t_1 = 2 - 2t_2$ to solve for t_1 and t_2 (and then need to check whether these values also work in the third equation). We can eliminate t_1 by combining the equations as $3eq_1 + eq_2$ to get $7 = 5 + t_2$, which gives us $t_2 = 2$. Plugged into eq_1 , we then find $2 - t_1 = 1 + 2$ and hence $t_1 = -1$. The third equation $t_1 = 5 - t_2$, however, does not hold for $t_1 = -1$ and $t_2 = 2$. This means that the two lines do not intersect. They are skew.

(e) To determine whether the two lines intersect, we ask whether there are values t_1 and t_2 such that

$$\begin{bmatrix} 2-t_1\\ 1+3t_1\\ t_1 \end{bmatrix} = \begin{bmatrix} -1+t_2\\ 8-2t_2\\ 3-t_2 \end{bmatrix}.$$

We can use the first two equations $2-t_1 = -1 + t_2$ and $1 + 3t_1 = 8 - 2t_2$ to solve for t_1 and t_2 (and then need to check whether these values also work in the third equation). We can eliminate t_1 by combining the equations as $3eq_1 + eq_2$ to get $7 = 5 + t_2$, which gives us $t_2 = 2$. Plugged into eq_1 , we then find $2 - t_1 = -1 + 2$ and hence $t_1 = 1$. The third equation $t_1 = 3 - t_2$ does indeed hold for $t_1 = 1$ and $t_2 = 2$. This means that the two lines do intersect. The point of intersection is $\begin{bmatrix} 2-t_1\\ 1+3t_1\\ t_1 \end{bmatrix}_{t_1=1} = \begin{bmatrix} 1\\ 4\\ 1 \end{bmatrix}$.

Suggestion: For verification, we can test that $\begin{bmatrix} -1+t_2\\8-2t_2\\3-t_2 \end{bmatrix}_{t_2=2} = \begin{bmatrix} 1\\4\\1 \end{bmatrix}$ is indeed the same point.

Problem 5. Set up an integral (but do not evaluate) for the length of the curve $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1-3t \\ \cos(2t) \\ t^2 \end{bmatrix}$ with $t \in [\pi, 2\pi]$.

Solution. The length of the curve is

$$\int_{\pi}^{2\pi} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}z}{\mathrm{d}t}\right)^2} \,\mathrm{d}t = \int_{\pi}^{2\pi} \sqrt{(-3)^2 + (-2\sin(2t))^2 + (2t)^2} \,\mathrm{d}t = \int_{\pi}^{2\pi} \sqrt{9 + 4\sin^2(2t) + 4t^2} \,\mathrm{d}t.$$

Problem 6. Find (a parametrization of) the tangent line to the curve $P(t) = \begin{bmatrix} (t+1)\ln t \\ (2t+1)^2 \\ t^3 \end{bmatrix}$ at t = 1.

Solution. The tangent line goes through $P(1) = \begin{bmatrix} 0 \\ 9 \\ 1 \end{bmatrix}$ and has direction $P'(1) = \begin{bmatrix} \ln t + (t+1)\frac{1}{t} \\ 4(2t+1) \\ 3t^2 \end{bmatrix}_{t=1} = \begin{bmatrix} 2 \\ 12 \\ 3 \end{bmatrix}$. Hence, it is parametrized by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 9 \\ 1 \end{bmatrix} + t \begin{bmatrix} 2 \\ 12 \\ 3 \end{bmatrix} = \begin{bmatrix} 2t \\ 9+12t \\ 1+3t \end{bmatrix}$.

6