Preparing for Midterm #1 MATH 126 - Calculus III

Please print your name:

Problem 1. Consider the points $P = (1, 2, -1), Q = (2, 3, 3)$ and $R = (-1, 1, 2)$.

- (a) Determine the vectors PQ and QR .
- (b) Find the distance between P and Q.
- (c) Find a parametrization for the line through P and Q.
- (d) Find a parametrization for the line segment from Q to R.
- (e) Find an equation for the plane through P, Q and R.
- (f) Find the distance between P and the line through Q and R .
- (g) Find an equation for the sphere with center P and radius 5.
- (h) Find the area of the triangle with vertices P , Q and R .

Solution.

- (a) $\overrightarrow{PQ} = \left[\begin{array}{c} 0 & \overrightarrow{PQ} \\ \overrightarrow{PQ} & \overrightarrow{PQ} \end{array} \right]$ \mathbf{I} 2 3 3 ı − $\sqrt{ }$ $\overline{1}$ 1 2 −1 $=$ \mathbf{I} 1 1 4 $\left|,\overrightarrow{QR}=\right|$ \mathbf{I} -3 −2 −1 ı \mathbf{I}
- (b) $\left\| \overrightarrow{PQ} \right\|$ = Е \mathbf{I} 1 1 4 וך Ш $=\sqrt{1 + 1 + 16} = \sqrt{18}$
- (c) \mathbf{I} x \overline{y} z $=$ \mathbf{I} 1 2 −1 $+ t$ Ί 1 1 4 $=$ \mathbf{I} $1+t$ $2+t$ $-1 + 4t$ with $t \in (-\infty, \infty)$
- (d) \mathbf{I} x \overline{y} z $=$ \mathbf{I} 2 3 3 $\Big]+t\Big[$ Ί −3 −2 −1 $=$ \mathbf{I} $2-3t$ $3 - 2t$ $3 - t$ with $t \in [0, 1]$
- (e) $\overrightarrow{PQ} =$ \mathbf{I} 1 1 4 $\left|,\,\overrightarrow{QR}=\right|$ \mathbf{I} -3 $^{-2}$ −1 are parallel to the plane.

Hence, we find a normal vector for the plane as $\boldsymbol{n} = \overrightarrow{PQ} \times \overrightarrow{QR} = \begin{bmatrix} \end{bmatrix}$ \mathbf{I} 1 1 4 ٦ \vert \times Е \mathbf{I} -3 −2 −1 $=$ \mathbf{I} $-1-(-8)$
-12 – (-1) $-2-(-3)$ $=$ \mathbf{I} $\begin{array}{c} 7 \\ -11 \\ 1 \end{array}$.

At this point, we know that the plane can be described by an equation of the form $7x - 11y + z = d$, and it remains to find the value d.

Since the point $P = (1, 2, -1)$ is on the plane, we have $7 \cdot 1 - 11 \cdot 2 + (-1) = d$, that is, $d = -16$.

In conclusion, our plane is described by the equation $7x - 11y + z = -16$.

Suggestion: If you have time left, verify this equation by plugging in all three points P, Q, R . If they all satisfy this equation, then your equation is guaranteed to be correct!

Comment: Here is a slightly longer derivation, which explains why we get an equation of the above shape. Our plane is known to contain the point $P = (1, 2, -1)$. On the other hand, another point $S = (x, y, z)$ is on the plane if and only if $\overrightarrow{PS} \cdot \mathbf{n} = 0$. (Why?)

Spelling out this last equation, we get \lceil $\overline{1}$ $x - 1$ $\frac{y-2}{z+1}$ ٦ $|\cdot$ Е \mathbf{I} $\begin{array}{c} 7 \\ -11 \\ 1 \end{array}$ $\left[= 0, \text{ or } 7(x-1)-11(y-2)+(z+1)=0, \text{ which simplifies} \right]$ to $7x - 11y + z = -16$. (And note how we actually ended up doing the same computation!)

(f) Recall that the distance between a point A and the line through B with direction \mathbf{v} is $d = \frac{\|\overrightarrow{BA} \times \mathbf{v}\|}{\|\mathbf{v}\|}$. For the distance between P and the line through Q and R , we therefore get

> $d =$ $\left\|\overrightarrow{QP}\times\overrightarrow{QR}\right\|$ $\left\|\vec{QR}\right\|$ = Е \mathbf{I} −1 −1 -4 ı $\vert x \rangle$ Е \mathbf{I} −3 $^{-2}$ −1 וך Ш \mathbb{I} Е \mathbf{I} −3 $^{-2}$ −1 וך \mathbb{R} $\begin{array}{c} \hline \end{array}$ $\frac{1}{2}$ = IΓ Ш $1 - 8$
 $12 - 1$ $2 - 3$ ור \mathbb{I} $\frac{\left\| \left[\begin{array}{c} 1-8 \\ 12-1 \\ 2-3 \end{array} \right] \right\|}{\sqrt{9+4+1}} =$ Г \mathbf{I} $\frac{-7}{11}$ −1 ٦ \mathbf{I} $\frac{1}{\sqrt{14}}$ = $\frac{-7}{\sqrt{14}}$ = $\sqrt{49 + 121 + 1}$ $\frac{+121+1}{\sqrt{14}} = \sqrt{\frac{171}{14}}.$

Suggestion: If you have time to review your answers, check each cross product by verifying that the result is orthogonal to both of the original vectors. For instance, here \lceil \mathbf{I} $\frac{-7}{11}$ −1 ٦ $|\cdot$ F $\overline{1}$ −1 −1 -4 $\Big] = 0$ and $\Big[$ $\overline{1}$ $\frac{-7}{11}$ −1 ı \mathbf{r} Е \mathbf{I} -3 −2 −1 $\Big] = 0.$

(g) $(x-1)^2 + (y-2)^2 + (z+1)^2 = 5^2$

Extra detail: A point $A = (x, y, z)$ is on that sphere if and only if $\|\overrightarrow{PA}\| = 5$. The equation above is the expanded version of $\left\| \overrightarrow{PA} \right\|$ $2^2 = 5^2$.

(h) Let $\boldsymbol{v} = \overrightarrow{PQ} =$ \mathbf{I} 1 1 4 and $\boldsymbol{w} = \overrightarrow{PR} = \begin{bmatrix} \end{bmatrix}$ \mathbf{I} $^{-2}$ −1 3 be two sides of our triangle (you can pick other sides, no problem!).

Then, borrowing from what we learned in class, the area of the triangle is

$$
\frac{1}{2} \|\mathbf{v} \times \mathbf{w}\| = \frac{1}{2} \left\| \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} \times \begin{bmatrix} -2 \\ -1 \\ 3 \end{bmatrix} \right\| = \frac{1}{2} \left\| \begin{bmatrix} 3 - (-4) \\ -8 - 3 \\ -1 - (-2) \end{bmatrix} \right\| = \frac{1}{2} \left\| \begin{bmatrix} 7 \\ -11 \\ 1 \end{bmatrix} \right\| = \frac{1}{2} \sqrt{49 + 121 + 1} = \frac{\sqrt{171}}{2}.
$$

Problem 2. Consider the vectors $v_1 =$ \lceil $\overline{1}$ 1 2 −1 1 $\Big\vert, v_2 =$ \lceil $\overline{1}$ 0 1 1 1 and $v_3 =$ $\sqrt{ }$ $\overline{1}$ 3 1 −1 1 $\left| \cdot \right|$

- (a) Determine $|v_1|$.
- (b) Determine $v_1 \cdot v_2$.
- (c) Determine $v_1 \times v_2$.
- (d) What is the angle between v_1 and v_2 ? (Between v_2 and v_3 ?)
- (e) Determine the projection of v_1 onto v_2 . (The projection of v_2 onto v_3 . Explain your answer!)
- (f) Find a vector which has length 3 and is parallel to v_1 .
- (g) Are there two of the three vectors which are parallel? Perpendicular?
- (h) Find a parametrization for the line through $(1, -1, 2)$ which is parallel to v_1 .
- (i) Find an equation for the plane through $(1, 2, 3)$ which is perpendicular to v_1 .
- (j) Find an equation for the plane through $(1, 2, 3)$ which is parallel to both v_1 and v_2 .

Solution.

- (a) $\|\bm{v}_1\| = \left\|$ Г \mathbf{I} 1 2 −1 ٦ \mathbf{I} $=\sqrt{1 + 4 + 1} = \sqrt{6}$
- (b) $\boldsymbol{v}_1 \cdot \boldsymbol{v}_2 = \begin{bmatrix} \end{bmatrix}$ $\overline{1}$ 1 2 −1 ٦ \mathbf{r} $\sqrt{ }$ $\overline{1}$ 0 1 1 $\Big] = 0 + 2 - 1 = 1$
- (c) $\boldsymbol{v}_1 \times \boldsymbol{v}_2 =$ \mathbf{I} 1 2 −1 ı $\vert x \vert$ Е \mathbf{I} 0 1 1 $=$ $\overline{1}$ $2 - (-1)$ $0 - 1$ $1 - 0$ $=$ \mathbf{I} 3 $\frac{-1}{1}$ ı \mathbf{I}
- (d) For the angle α between v_1 and v_2 , we have $\cos \alpha = \frac{v_1 \cdot v_2}{\|u_1\|_{\text{loc}}}$ $\frac{\boldsymbol{v}_1\cdot\boldsymbol{v}_2}{\|\boldsymbol{v}_1\|\|\boldsymbol{v}_2\|} = \frac{1}{\sqrt{6}}$ $\frac{1}{\sqrt{6}\sqrt{2}} = \frac{1}{\sqrt{12}}$ and hence $\alpha = \arccos\left(\frac{1}{\sqrt{12}}\right) \approx 1.278$ (which is about 73.22°).

For the angle β between v_2 and v_3 , we have $\cos \beta = \frac{v_2 \cdot v_3}{\|u_2\| \|v_3\|}$ $\frac{\boldsymbol{v}_2 \cdot \boldsymbol{v}_3}{\|\boldsymbol{v}_2\| \|\boldsymbol{v}_3\|} = 0$ and hence $\beta = \frac{\pi}{2}$ $\frac{\pi}{2}$ (that is, 90 $^{\circ}$). In other words, v_2 and v_3 are perpendicular.

(e) The projection of v_1 onto v_2 is $\text{proj}_{v_2} v_1 = \frac{v_1 \cdot v_2}{\|v_1\| \|v_2\| \|v_1\| \|v_2\|}$ $\displaystyle \frac{\boldsymbol{v}_1\cdot \boldsymbol{v}_2}{\|\boldsymbol{v}_2\|^2}\,\boldsymbol{v}_2\!=\!\frac{1}{2}$ 2 \lceil 1 θ 1 1 1 $\left| \cdot \right|$

The projection of v_2 onto v_3 is $\text{proj}_{v_3} v_2 = \frac{v_2 \cdot v_3}{\|v_3\| \|v_2\|}$ $\frac{\boldsymbol{v}_2\cdot\boldsymbol{v}_3}{\|\boldsymbol{v}_3\|^2}\boldsymbol{v}_3\!=\!$ \lceil $\overline{1}$ θ θ θ 1 . This is because v_2 is perpendicular to v_3 .

- (f) The vector $3\frac{v_1}{v_1}$ $\frac{\boldsymbol{v}_1}{\|\boldsymbol{v}_1\|} = \frac{3}{\sqrt{6}}$ $\overline{\sqrt{6}}$ $\sqrt{ }$ 1 1 2 −1 1 has length 3 and is parallel to v_1 .
- (g) Two vectors a, b are parallel if and only if one of the vectors is a multiple of the other. The three vectors are clearly not multiples of each other.

Comment: You might also recall from class that two vectors a, b are parallel if and only if $a \times b = 0$. So you could also compute these cross products. That takes more time though.

Two vectors a, b are perpendicular if and only if $a \cdot b = 0$. We have $v_1 \cdot v_2 = 1$, $v_1 \cdot v_3 = 6$ and $v_2 \cdot v_3 = 0$. Hence, v_2 and v_3 are perpendicular.

- (h) \mathbf{I} x \overline{y} z $=$ \mathbf{I} 1 $\frac{-1}{2}$ $+ t$ Ί 1 2 −1 $=$ $\overline{1}$ $1 + t$ $-1 + 2t$ $2 - t$ with $t \in (-\infty, \infty)$
- (i) We know that the plane has normal vector $\boldsymbol{n} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ \mathbf{I} 1 2 −1 , and so can be described by an equation of the form $x+2y-z=d$. To find the value d, we use the fact that the point $P=(1,2,3)$ is on the plane: $1+2\cdot2-3=d$, and so, $d = 2$. Our plane is described by $x + 2y - z = 2$.
- (j) The plane is parallel to both v_1 and v_2 if and only if it is perpendicular to $v_1 \times v_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ \mathbf{I} 3 −1 1 .

Hence, the plane can be described by an equation of the form $3x - y + z = d$. To find the value d, we use the fact that the point $P = (1, 2, 3)$ is on the plane: $3 \cdot 1 - 2 + 3 = d$, and so, $d = 4$. Our plane is described by $3x - y + z = 4$. $3x - y + z = 4.$

Problem 3. Consider the plane described by $3x - y - 2z = 4$.

- (a) Determine a normal vector for the plane.
- (b) Find the *x*-intercept, the *y*-intercept and the *z*-intercept of the plane.
- (c) Find a unit vector perpendicular to our plane.
- (d) Find an equation for the plane through $(1, 2, 3)$ which is parallel to our plane.

(e) Is the line with parametrization $\begin{bmatrix} \end{bmatrix}$ $\overline{1}$ x \overline{y} z $=$ \mathbf{I} $1+t$ $2+t$ $3+t$ parallel to our plane?

(f) If possible, find the intersection of the line with parametrization \lceil \mathbf{I} x \overline{y} z $=$ \mathbf{I} $1-2t$
 $3+t$ 1 and our plane.

- (g) Determine the distance between the point $(1, 2, 3)$ and our plane.
- (h) Find (a parametrization for) the line in which our plane intersects with the plane $x + y + z = 2$.

Solution.

- (a) $\boldsymbol{n} = \begin{bmatrix} \end{bmatrix}$ \mathbf{I} 3 −1 $^{-2}$ is a normal vector (as is any multiple of it).
- (b) The intersection with x-axis, y-axis and z-axis are $(\frac{4}{3},0,0)$, $(0,-4,0)$ and $(0,0,-2)$, respectively. The x-intercept is $\frac{4}{3}$, the y-intercept is -4 and the z-intercept is -2.
- (c) There is two unit vectors perpendicular to our plane: $\frac{n}{\ln n}$ $\frac{n}{\|n\|} = \frac{1}{\sqrt{1}}$ $\sqrt{14}$ $\sqrt{ }$ 1 3 −1 2 1 and [−] n $\frac{n}{\|n\|} = \frac{-1}{\sqrt{14}}$ $\sqrt{14}$ $\sqrt{ }$ 1 3 −1 2 1 $\left| \cdot \right|$
- (d) Observe that planes are parallel if and only if they share the same normal direction. Hence, any plane parallel to $3x - y - 2z = 4$ can be described by an equation of the form $3x - y - 2z = d$. To find the value d, we use the fact that the point $P = (1, 2, 3)$ is on the plane: $3 \cdot 1 - 2 - 2 \cdot 3 = d$, and so, $d = -5$. Thus, our plane is described by $3x - y - 2z = -5$.
- (e) A line with direction v is parallel to a plane with normal vector n if and only if $v \cdot n = 0$. Since \mathbf{I} 1 1 1 ٦ $|\cdot$ Е \mathbf{I} 3 −1 $^{-2}$ $\Big] = 0,$ the given line is indeed parallel to our plane.
- (f) \mathbf{I} x \overline{y} z $=$ \mathbf{I} $\frac{1-2t}{3+t}$ 1 is a point on the plane if and only if $3(1-2t)-(3+t)-2\cdot 1=4$. Simplified, this is $-2-7t=4$, which we solve for $t = -\frac{6}{7}$ $\frac{6}{7}$. Hence, the line and plane intersect in the point $\left[$ \mathbf{I} $1 - 2t$
 $3 + t$ 1 ٦ $\int_{t=-\frac{6}{7}}$ $=\frac{1}{7}$ 7 Е Έ 19 15 7 . **Suggestion:** Check that $\frac{1}{7}$ Е Τ 19 15 7 is indeed on the plane by plugging in.
- (g) Recall that the distance between a point A and the plane through B with normal \boldsymbol{n} is $d = \frac{\left|\overrightarrow{BA} \cdot \boldsymbol{n}\right|}{\|\boldsymbol{n}\|}$.

For the distance between $A = (1, 2, 3)$ and our plane, for which we can choose $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ \mathbf{I} 0 0 −2 $\Big]$ and $\boldsymbol{n} = \Big[$ \mathbf{I} 3 −1 -2 , we get

$$
d = \frac{|\overrightarrow{BA} \cdot \mathbf{n}|}{\|\mathbf{n}\|} = \frac{\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}}{\begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}} = \frac{|3 - 2 - 10|}{\sqrt{9 + 1 + 4}} = \frac{9}{\sqrt{14}}.
$$

(h) To find the intersection of $3x - y - 2z = 4$ and $x + y + z = 2$, we can subtract $3eq_2$ from eq₁ (to eliminate x). eq₁ − 3eq₂ is $-4y - 5z = -2$. Since we cannot eliminate further, we now choose to set $z = t$, our parameter.

From $-4y - 5t = -2$, we then find $y = \frac{1}{2}$ $\frac{1}{2} - \frac{5}{4}$ $\frac{5}{4}t$.

Substituting into the first equation, we get $3x - \left(\frac{1}{2} - \frac{5}{4}\right)$ $(\frac{5}{4}t) - 2t = 4$, which we solve for $x = \frac{3}{2}$ $\frac{3}{2} + \frac{1}{4}$ $\frac{1}{4}t$.

Taken together, we have $\sqrt{ }$ $\overline{1}$ \boldsymbol{x} \hat{y} z 1 \vert = \lceil $\Big\}$ 3 $\frac{3}{2} + \frac{1}{4}$ $\frac{1}{4}t$ 1 $\frac{1}{2} - \frac{5}{4}$ $rac{5}{4}t$ t 1 \parallel , which is a parametrization for the line of intersection. $\sqrt{ }$ 1 1

Suggestion: To verify our result, we can check that the direction $v =$ $\Big\}$ 4 $-\frac{5}{4}$ $\begin{smallmatrix} 4 \ 1 \end{smallmatrix}$ \parallel is perpendicular to both of the normal vectors. Indeed, Е $\overline{}$ $\frac{1}{4}$ $-\frac{5}{4}$ 1 ٦ $|\cdot$ Е \mathbf{I} 3 −1 $^{-2}$ $\Big] = 0$ and Е $\overline{}$ $\frac{1}{4}$ $-\frac{5}{4}$
1 ٦ $\vert \cdot$ Е \mathbf{I} 1 1 1 $\Big] = 0.$

Alternative solution: In the spirit of the above "suggestion", we can find the direction of the line of intersection by computing $v =$ \mathbf{I} 3 −1 -2 ı \vert \times Е \mathbf{I} 1 1 1 $=$ \mathbf{I} $-1-(-2)$ $-2 - 3$ $3 - (-1)$ $=$ \mathbf{I} 1 −5 4 . This just 4 times the direction vector we found above.

To write down a parametrization, we still need to find a point on the line. (You can do this by making an arbitrary choice for one of x, y or z, and then solving the two equations $3x - y - 2z = 4$ and $x + y + z = 2$ for the two remaining unknowns.)

 \Box

Problem 4. Consider the line L_1 parametrized by $\begin{bmatrix} \end{bmatrix}$ $\overline{1}$ x \overline{y} z $=$ $\overline{1}$ $2 - t$
 $1 + 3t$ t .

- (a) Find a parametrization for the line parallel to L_1 through the point $(1, 2, 3)$.
- (b) What is the distance between the point $(1, 2, 3)$ and the line L_1 ?
- (c) Let L_2 be a second line, parametrized by $\left[\right]$ \mathbf{I} x \overline{y} z $=$ $\overline{1}$ $1 + 2t$ $-6t$ $1-2t$. Are L_1 and L_2 parallel? Are they the same line?
- (d) Let L_3 be a third line, parametrized by $\left[\right]$ \mathbf{I} x \overline{y} z $=$ $\overline{1}$ $1+t$ $2 - 2t$ $5 - t$. Do L_1 and L_3 intersect? If yes, find their intersection.
- (e) Let L_4 be a fourth line, parametrized by \mathbf{I} x \overline{y} z $=$ \mathbf{I} $-1+t$ $8 - 2t$ $3 - t$. Do L_1 and L_4 intersect? If yes, find their intersection.

Solution.

- (a) \mathbf{I} x \overline{y} z $=$ \mathbf{I} 1 2 3 $\Big]+t\Big[$ Ί −1 3 1 $=$ \mathbf{I} $1 - t$
 $2 + 3t$ $3 + t$ with $t \in (-\infty, \infty)$
- (b) Recall that the distance between a point A and the line through B with direction \boldsymbol{v} is $d = \frac{\|\overrightarrow{BA} \times \boldsymbol{v}\|}{\|\boldsymbol{v}\|}$.

For the distance between $A = (1, 2, 3)$ and our line through $B = (2, 1, 0)$ and direction $\mathbf{v} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ \mathbf{I} −1 3 1 , we therefore get

$$
d = \frac{\left\|\overrightarrow{BA} \times \mathbf{v}\right\|}{\left\|\mathbf{v}\right\|} = \frac{\left\|\begin{bmatrix} -1\\1\\3 \end{bmatrix} \times \begin{bmatrix} -1\\3\\1 \end{bmatrix}\right\|}{\left\|\begin{bmatrix} -1\\3\\1 \end{bmatrix}\right\|} = \frac{\left\|\begin{bmatrix} 1-9\\-3-(-1)\\-3-(-1) \end{bmatrix}\right\|}{\sqrt{1+9+1}} = \frac{\left\|\begin{bmatrix} -8\\-2\\-2 \end{bmatrix}\right\|}{\sqrt{11}} = \frac{\sqrt{64+4+4}}{\sqrt{11}} = \sqrt{\frac{72}{11}}.
$$

(c) We need to check whether the direction vectors $v_2 =$ \mathbf{I} 2 -6 −2 $\Big]$ and $v_1 = \Big[$ $\overline{1}$ −1 3 1 are parallel. They clearly are because $v_2 = -2v_1$. Hence, the lines are parallel.

Are the lines the same? Since we already know that the lines are parallel, this is the case if and only if they have a point in common. L_1 obviously contains the point $\left\lceil \right\rceil$ \mathbf{I} 2 1 0 and so we check whether that point is also on L_2 : however, there is no t such that $\left[\right]$ \mathbf{I} $1 + 2t$ $-6t$ $1-2t$ $=$ $\overline{1}$ 2 1 0 . (Why?) This means that the lines are not the same.

(d) To determine whether the two lines intersect, we ask whether there are values t_1 and t_2 such that

$$
\left[\begin{array}{c}2-t_1\\1+3t_1\\t_1\end{array}\right]=\left[\begin{array}{c}1+t_2\\2-2t_2\\5-t_2\end{array}\right].
$$

We can use the first two equations $2-t_1=1+t_2$ and $1+3t_1=2-2t_2$ to solve for t_1 and t_2 (and then need to check whether these values also work in the third equation). We can eliminate t_1 by combining the equations as $3eq_1 + eq_2$ to get $7 = 5 + t_2$, which gives us $t_2 = 2$. Plugged into eq₁, we then find $2 - t_1 = 1 + 2$ and hence $t_1 = -1$. The third equation $t_1 = 5 - t_2$, however, does not hold for $t_1 = -1$ and $t_2 = 2$. This means that the two lines do not intersect. They are skew.

(e) To determine whether the two lines intersect, we ask whether there are values t_1 and t_2 such that

$$
\left[\begin{array}{c}2-t_1\\1+3t_1\\t_1\end{array}\right]=\left[\begin{array}{c}-1+t_2\\8-2t_2\\3-t_2\end{array}\right].
$$

We can use the first two equations $2-t_1=-1+t_2$ and $1+3t_1=8-2t_2$ to solve for t_1 and t_2 (and then need to check whether these values also work in the third equation). We can eliminate t_1 by combining the equations as $3eq_1 + eq_2$ to get $7 = 5 + t_2$, which gives us $t_2 = 2$. Plugged into eq₁, we then find $2 - t_1 = -1 + 2$ and hence $t_1 = 1$. The third equation $t_1 = 3 - t_2$ does indeed hold for $t_1 = 1$ and $t_2 = 2$. This means that the two lines do intersect. The point of intersection is $\left[\right]$ \mathbf{I} $2 - t_1$
 $1 + 3t_1$ t_1 ٦ $\int_{t_1=1}$ $=$ \mathbf{I} 1 4 1 .

Suggestion: For verification, we can test that $\begin{bmatrix} \end{bmatrix}$ $\overline{1}$ $-1 + t_2$ $8 - 2t_2$ $3 - t_2$ ٦ $\Big]_{t_2=2}$ $=$ \mathbf{I} 1 4 1 is indeed the same point.

Problem 5. Set up an integral (but do not evaluate) for the length of the curve \lceil $\overline{1}$ x \hat{y} z 1 \vert = $\sqrt{ }$ \perp $1-3t$ $\cos(2t)$ t^2 1 with $t \in [\pi, 2\pi]$.

Solution. The length of the curve is

$$
\int_{\pi}^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt = \int_{\pi}^{2\pi} \sqrt{(-3)^2 + (-2\sin(2t))^2 + (2t)^2} dt = \int_{\pi}^{2\pi} \sqrt{9 + 4\sin^2(2t) + 4t^2} dt.
$$

Problem 6. Find (a parametrization of) the tangent line to the curve $P(t)$ = $\sqrt{ }$ \parallel $(t+1)$ ln t $(2t+1)^2$ t^3 1 | at $t = 1$.

Solution. The tangent line goes through $P(1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ \mathbf{I} 0 9 1 and has direction $P'(1) =$ $\sqrt{ }$ $\overline{1}$ $\ln t + (t+1)\frac{1}{t}$
4(2t + 1) $3t^2$ ı $\Big]_{t=1}$ $=$ $\overline{1}$ $\frac{2}{12}$ 3 . Hence, it is parametrized by $\left[\right]$ \mathbf{I} x \overline{y} z $=$ \mathbf{I} $\boldsymbol{0}$ 9 1 $+ t$ Ί $\frac{2}{12}$ 3 $=$ $\overline{1}$ $\frac{2t}{9+12t}$ $1+3t$ ı .
|.

 \Box