Preparing for Midterm #1

Please print your name:

Problem 1. Consider the points P = (1, 2, -1), Q = (2, 3, 3) and R = (-1, 1, 2).

- (a) Determine the vectors \overrightarrow{PQ} and \overrightarrow{QR} .
- (b) Find the distance between P and Q.
- (c) Find a parametrization for the line through P and Q.
- (d) Find a parametrization for the line segment from Q to R.
- (e) Find an equation for the plane through P, Q and R.
- (f) Find the distance between P and the line through Q and R.
- (g) Find an equation for the sphere with center P and radius 5.
- (h) Find the area of the triangle with vertices P, Q and R.

Problem 2. Consider the vectors $\boldsymbol{v}_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, $\boldsymbol{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ and $\boldsymbol{v}_3 = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$.

- (a) Determine $|\boldsymbol{v}_1|$.
- (b) Determine $\boldsymbol{v}_1 \cdot \boldsymbol{v}_2$.
- (c) Determine $\boldsymbol{v}_1 \times \boldsymbol{v}_2$.
- (d) What is the angle between v_1 and v_2 ? (Between v_2 and v_3 ?)
- (e) Determine the projection of v_1 onto v_2 . (The projection of v_2 onto v_3 . Explain your answer!)
- (f) Find a vector which has length 3 and is parallel to v_1 .
- (g) Are there two of the three vectors which are parallel? Perpendicular?
- (h) Find a parametrization for the line through (1, -1, 2) which is parallel to v_1 .
- (i) Find an equation for the plane through (1, 2, 3) which is perpendicular to v_1 .
- (j) Find an equation for the plane through (1, 2, 3) which is parallel to both v_1 and v_2 .

Problem 3. Consider the plane described by 3x - y - 2z = 4.

- (a) Determine a normal vector for the plane.
- (b) Find the *x*-intercept, the *y*-intercept and the *z*-intercept of the plane.
- (c) Find a unit vector perpendicular to our plane.
- (d) Find an equation for the plane through (1, 2, 3) which is parallel to our plane.
- (e) Is the line with parametrization $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1+t \\ 2+t \\ 3+t \end{bmatrix}$ parallel to our plane?
- (f) If possible, find the intersection of the line with parametrization $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1-2t \\ 3+t \\ 1 \end{bmatrix}$ and our plane.
- (g) Determine the distance between the point (1, 2, 3) and our plane.
- (h) Find (a parametrization for) the line in which our plane intersects with the plane x + y + z = 2.

Problem 4. Consider the line L_1 parametrized by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2-t \\ 1+3t \\ t \end{bmatrix}$.

- (a) Find a parametrization for the line parallel to L_1 through the point (1, 2, 3).
- (b) What is the distance between the point (1, 2, 3) and the line L_1 ?
- (c) Let L_2 be a second line, parametrized by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1+2t \\ -6t \\ 1-2t \end{bmatrix}$. Are L_1 and L_2 parallel? Are they the same line?
- (d) Let L_3 be a third line, parametrized by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1+t \\ 2-2t \\ 5-t \end{bmatrix}$. Do L_1 and L_3 intersect? If yes, find their intersection.
- (e) Let L_4 be a fourth line, parametrized by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1+t \\ 8-2t \\ 3-t \end{bmatrix}$. Do L_1 and L_4 intersect? If yes, find their intersection.

Problem 5. Set up an integral (but do not evaluate) for the length of the curve $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1-3t \\ \cos(2t) \\ t^2 \end{bmatrix}$ with $t \in [\pi, 2\pi]$.

Problem 6. Find (a parametrization of) the tangent line to the curve $P(t) = \begin{bmatrix} (t+1)\ln t \\ (2t+1)^2 \\ t^3 \end{bmatrix}$ at t = 1.