Sketch of Lecture 35 Wed, 4/17/2019

Application: digital signatures

Goal: Using a private key, known only to her, Alice can attach her digital signature s to any
message m. Anyone knowing her public key can then verify that it could only have been Alice,
who signed the message.

e Consequently, in contrast to usual signatures, digital signatures must depend on the message to be
signed so that they cannot be simply reproduced by an adversary.

e This should sound a lot like public-key cryptography!
Cryptographically speaking, a digitally signed message (m, s) from Alice to Bob achieves:

e integrity: the message has not been accidentally or intentionally modified

e authenticity: Bob can be confident the message came from Alice

In fact, we gain even more: not only is Bob assured that the message is from Alice, but the evidence
can be verified by anyone. We have “proof” that Alice signed the message. This is referred to as non-
repudiation. We refer to a technical not a legal term here: if you are curious about legal aspects of
digital signatures, see, e.g.:

https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108

For comparison, sending a message with its hash (m, H(m)) only achieves integrity.

Example 200. (authentication using digital signatures) Last time, we saw that using
human generated and memorized passwords is problematic even if done “right” (Example 196).
Among other things, digital signatures provide an alternative approach to authentication.
Authentication. If Alice wants to authenticate herself with a server, the server sends her a (random) message.
Using her private key, Alice signs this message and sends it back to the server. The server then verifies her
(digital) signature using Alice's public key.
Obvious advantage. The server (like everyone else) doesn’t know Alice’s secret, so it cannot be stolen from
the server (of course, Alice still needs to protect her secret from it being stolen).

(RSA signatures) Let H be a collision-resistant hash function.

e Alice creates a public RSA key (N, e). Her (secret) private key is d.

e Her signature of m is s = H(m)? (mod N).

e To verify the signed message (m, s), Bob checks that H(m) = s® (mod ).

This is secure if RSA is secure against known plaintext attacks.
Example 201. We use the silly hash function H(z) =2z (mod 10).
Alice's public RSA key is (N, e) =(33,3), her private key is d=7.
(a) How does Alice sign the message m = 123457
(b) How does Bob verify her message?
(c) Was the message (m, s) = (314, 2) signed by Alice?

Armin Straub 79

straub@southalabama.edu



Solution.

(a) H(m)=75. The signature therefore is s =57 (mod 33) (note how computing that signature requires
Alice's private key). Computing that, we find s = 14.

(b) Bob receives the signed message (m, s) = (12345, 14).
He computes H (m)=>5 and then checks whether H (m)=s3 (mod 33) (for which he only needs Alice’s
public key). Indeed, 143 =5 (mod 33), so the signature checked out.

(c) We compute H(m) = 4 and then need to check whether H(m) = s (mod 33). Since 23 = 8 #
4 (mod 33), the signature does not check out. Alice didn't sign the message.

Just to make sure. What's a collision of our hash function? Why is it totally not one-way?

Example 202. Why should Alice sign the hash H(m) and not the message m?

Solution. A practical reason is that signing H(m) is simpler/faster. The message m could be long, in which
case we would have to do something like chop it into blocks and sign each block (but then Eve could rearrange
these, so we would have to do something more clever, like for block ciphers). In any case, we shouldn't just
sign m (mod N) because then Eve can just replace m with any m’ as long as m =m’ (mod N).

There is another issue though. Namely, Eve can do the following no message attack: she starts with any
signature s, then computes m = s¢ (mod V). Everyone will then believe that (m, s) is a message signed by
Alice. This does not work if H is a one-way function: Eve now needs to find m such that H(m)=s° (mod N),
but she fails to find such m if H is one-way.

Example 203. Is it enough if the hash for signing is one-way but not collision-resistant?

Solution. No, that is not enough. If there is a collision H(m) = H(m'), then Eve can ask Alice to sigh m
to get (m, s) and later replace m with m’, because (m/’, s) is another valid signed message. (See also the
comments after the discussion of birthday attacks.)

Comment. This question is of considerable practical relevance, since hash functions like MD5 and SHA-1
have been shown to not be collision-resistant (but are still considered essentially preimage-resistant, that is,
one-way). In the case of MDD5, this has been exploited in practice:

https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities

Example 204. Alice uses an RSA signature scheme and the (silly) hash function H(z) =
71+ T2, where 71 =21 (mod11) and zo=x"" (mod 7) [with 0~ ! interpreted as 0] to produce
the signed message (100, 13). Forge a second signed message.

Solution. Since we have no other information, in order to forge a signed message, we need to find another

message with the same hash value as m = 100. From our experience with the Chinese remainder theorem,
we realize that changing = by 7- 11 does not change H(z). Hence, a second signed message is (177, 13).

Comment. The hash H(m) for m =100 is H(100) = (100~ ') 0q11 + (100~ poa7=1+4=5.

Similar to what we did with RSA signatures, one can use ElGamal as the basis for digital sig-
natures. A variation of that is the DSA (digital signature algorithm), another federal standard.

https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
Not surprisingly, the hashes mandated for DSA are from the SHA family.

Armin Straub 80

straub@southalabama.edu



Birthday paradox and birthday attacks

Example 205. (birthday paradox) Among n =35 people (a typical class size), how likely is
it that two have the same birthday?

1 2 3 34
1— (1365>(1365>(1%5)..(1%5>N0.814

If the formula doesn’t speak to you, see Section 8.4 in our book for more details or checkout:

Solution.

https://en.wikipedia.org/wiki/Birthday_problem
Comment. For n =50, we get a 97.0% chance. For n =70, it is 99.9%.
Comment. In reality, birthdays are not distributed quite uniformly, which further increases these probabilities.

How is this relevant to crypto, and hashes in particular?

Think about people as messages and birthdays as the hash of a person. The birthday paradox is saying that
“collisions” occur more frequently then one might expect.

Example 206. Suppose M is large (M = 365 in the birthday problem) compared to n. The
probability that, among n selections from M choices, there is no collision is

(-3 B)-2)oc

Why? For small z, we have e” ~ 1+ x (the tangent line of e” at © =0). Hence, (1 — %) ~e k/M 3nd

_n(n-1)

_ 1 2N\ (1=l 1M 2/ M —(n—1)/M _ — (1424t (n—1))/M _ G
<1 M)(l M) (1 i >~e e e —e —e

2

n(n—1) _n(n-1) _n

In the last step, we used that 1 +2+ ...+ (n—1)= 5 . Finally, e 72 =~e 2M,

Decent approximation? For instance, for M = 365 and n = 35, we get 0.813 for the chance of a collision
(instead of the true 0.814).

Important observation. If n~+/M, then the probability of no collision is about e ~*/2~0.607.
In other words, a collision is quite likely!

In the context of hash functions, this means the following: if the output size is b bits, then there are M = ob
many possible hashes. If we make a list of VM = 2b/2 many hashes, we are likely to observe a collision.

For collision-resistance, the output size of a hash function needs to have twice the number
of bits that would be necessary to prevent a brute-force attack.

Practical relevance. This is very important for every application of hashes which relies on collision-resistance,
such as digital signatures.

For instance, think about Eve trying to trick Alice into signing a fraudulent contract m. Instead of m, she
prepares a different contract m’ that Alice would be happy to sign. Eve now creates many slight variations
of m and m’ (for instance, by varying irrelevant things like commas or spaces) with the hope of finding m
and m/ such that H(m)= H(m'). (Why?!!)

Armin Straub 81

straub@southalabama.edu




